We give a new identity involving Bernoulli polynomials and combinatorial numbers. This provides, in particular, a Faulhaber-like formula for sums of the form for positive integers and .
Nous donnons une nouvelle identité utilisant les polynômes de Bernoulli et les coefficient binomiaux. Ceci fournit, en particulier, une formule de type Faulhaber pour des sommes de la forme où et sont des entiers positifs.
Revised:
Accepted:
Published online:
J. Fernando Barbero G. 1, 2; Juan Margalef-Bentabol 1, 3, 4; Eduardo J.S. Villaseñor 5, 1
@article{CRMATH_2020__358_1_41_0, author = {J. Fernando Barbero G. and Juan Margalef-Bentabol and Eduardo J.S. Villase\~nor}, title = {A two-sided {Faulhaber-like} formula involving {Bernoulli} polynomials}, journal = {Comptes Rendus. Math\'ematique}, pages = {41--44}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.10}, language = {en}, }
TY - JOUR AU - J. Fernando Barbero G. AU - Juan Margalef-Bentabol AU - Eduardo J.S. Villaseñor TI - A two-sided Faulhaber-like formula involving Bernoulli polynomials JO - Comptes Rendus. Mathématique PY - 2020 SP - 41 EP - 44 VL - 358 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmath.10 LA - en ID - CRMATH_2020__358_1_41_0 ER -
%0 Journal Article %A J. Fernando Barbero G. %A Juan Margalef-Bentabol %A Eduardo J.S. Villaseñor %T A two-sided Faulhaber-like formula involving Bernoulli polynomials %J Comptes Rendus. Mathématique %D 2020 %P 41-44 %V 358 %N 1 %I Académie des sciences, Paris %R 10.5802/crmath.10 %G en %F CRMATH_2020__358_1_41_0
J. Fernando Barbero G.; Juan Margalef-Bentabol; Eduardo J.S. Villaseñor. A two-sided Faulhaber-like formula involving Bernoulli polynomials. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 41-44. doi : 10.5802/crmath.10. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.10/
[1] On the distribution of the eigenvalues of the area operator in loop quantum gravity, Class. Quant. Grav., Volume 35 (2018) no. 6, 065008, 17 pages | MR | Zbl
[2] On the relation between binomial theorem and discrete convolution of piecewise defined power function (2016) (https://arxiv.org/abs/1603.02468)
[3] The On-Line Encyclopedia of Integer Sequences, 2010 (http://oeis.org)
[4] Combinatorial identities in dual sequences, Eur. J. Comb., Volume 24 (2003) no. 6, pp. 709-718 | MR | Zbl
Cited by Sources:
Comments - Policy