We prove Gersten’s conjecture for étale cohomology over two dimensional henselian regular local rings without assuming equi-characteristic. As an application, we obtain the local-global principle for Galois cohomology over mixed characteristic two-dimensional henselian local rings.
Nous montrons la conjecture de Gersten pour la cohomologie étale sur des anneaux locaux réguliers henséliens sans supposer de caractère équicaractéristique. En application, nous obtenons le principe local-global pour la cohomologie de Galois sur des anneaux locaux henséliens à deux dimensions de caractéristique mixte.
Revised:
Accepted:
Published online:
Makoto Sakagaito 1
@article{CRMATH_2020__358_1_33_0, author = {Makoto Sakagaito}, title = {A note on {Gersten{\textquoteright}s} conjecture for \'etale cohomology over two-dimensional henselian regular local rings}, journal = {Comptes Rendus. Math\'ematique}, pages = {33--39}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.9}, language = {en}, }
TY - JOUR AU - Makoto Sakagaito TI - A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings JO - Comptes Rendus. Mathématique PY - 2020 SP - 33 EP - 39 VL - 358 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmath.9 LA - en ID - CRMATH_2020__358_1_33_0 ER -
Makoto Sakagaito. A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 33-39. doi : 10.5802/crmath.9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.9/
[1] Grothendieck Topologies, Harvard University, 1962 | Zbl
[2] Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 181-201 | DOI | MR | Zbl
[3] Quelques problèmes locaux-globaux (2011) (personal notes)
[4] The Bloch–Ogus–Gabber theorem, Algebraic K-theory (Fields Institute Communications), Volume 16, American Mathematical Society, 1997, pp. 31-94 | MR | Zbl
[5] A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka) (Advanced Studies in Pure Mathematics), Volume 36, Mathematical Society of Japan, 2000, pp. 153-183 | MR | Zbl
[6] Motivic cohomology over Dedekind rings, Math. Z., Volume 248 (2004) no. 4, pp. 773-794 | DOI | Zbl
[7] Local-global principles for Galois cohomology, Comment. Math. Helv., Volume 89 (2014) no. 1, pp. 215-253 | DOI | MR | Zbl
[8] A Cohomological Hasse Principle Over Two-dimensional Local Rings, Int. Math. Res. Not., Volume 2017 (2017) no. 14, pp. 4369-4397 | MR | Zbl
[9] Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl
[10] The equicharacteristic case of the Gersten conjecture, Tr. Mat. Inst. Im. V. A. Steklova, Volume 241 (2003) no. 2, pp. 169-178 | MR | Zbl
[11] Arithmetic on two-dimensional local rings, Invent. Math., Volume 85 (1986), pp. 379-414 | DOI | MR | Zbl
[12] On problems about a generalization of the Brauer group (2016) (https://arxiv.org/abs/1511.09232v2)
[13] On a generalized Brauer group in mixed characteristic cases (2019) (https://arxiv.org/abs/1710.11449v2)
[14] On motivic cohomology with -coefficients, Ann. Math., Volume 174 (2011) no. 1, pp. 401-438 | MR | Zbl
Cited by Sources:
Comments - Policy