Comptes Rendus
Number Theory, Homological Algebra
A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings
Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 33-39.

We prove Gersten’s conjecture for étale cohomology over two dimensional henselian regular local rings without assuming equi-characteristic. As an application, we obtain the local-global principle for Galois cohomology over mixed characteristic two-dimensional henselian local rings.

Nous montrons la conjecture de Gersten pour la cohomologie étale sur des anneaux locaux réguliers henséliens sans supposer de caractère équicaractéristique. En application, nous obtenons le principe local-global pour la cohomologie de Galois sur des anneaux locaux henséliens à deux dimensions de caractéristique mixte.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.9

Makoto Sakagaito 1

1 Indian Institute of Science Education and Research, Mohali
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_1_33_0,
     author = {Makoto Sakagaito},
     title = {A note on {Gersten{\textquoteright}s} conjecture for \'etale cohomology over two-dimensional henselian regular local rings},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {33--39},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {1},
     year = {2020},
     doi = {10.5802/crmath.9},
     language = {en},
}
TY  - JOUR
AU  - Makoto Sakagaito
TI  - A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 33
EP  - 39
VL  - 358
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.9
LA  - en
ID  - CRMATH_2020__358_1_33_0
ER  - 
%0 Journal Article
%A Makoto Sakagaito
%T A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings
%J Comptes Rendus. Mathématique
%D 2020
%P 33-39
%V 358
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmath.9
%G en
%F CRMATH_2020__358_1_33_0
Makoto Sakagaito. A note on Gersten’s conjecture for étale cohomology over two-dimensional henselian regular local rings. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 33-39. doi : 10.5802/crmath.9. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.9/

[1] Michael Artin Grothendieck Topologies, Harvard University, 1962 | Zbl

[2] Spencer Bloch; Arthur Ogus Gersten’s conjecture and the homology of schemes, Ann. Sci. Éc. Norm. Supér., Volume 7 (1974), pp. 181-201 | DOI | MR | Zbl

[3] Jean-Louis Colliot-Thélène Quelques problèmes locaux-globaux (2011) (personal notes)

[4] Jean-Louis Colliot-Thélène; Raymond T. Hoobler; Bruno Kahn The Bloch–Ogus–Gabber theorem, Algebraic K-theory (Fields Institute Communications), Volume 16, American Mathematical Society, 1997, pp. 31-94 | MR | Zbl

[5] Kazuhiro Fujiwara A proof of the absolute purity conjecture (after Gabber), Algebraic geometry 2000, Azumino (Hotaka) (Advanced Studies in Pure Mathematics), Volume 36, Mathematical Society of Japan, 2000, pp. 153-183 | MR | Zbl

[6] Thomas Geisser Motivic cohomology over Dedekind rings, Math. Z., Volume 248 (2004) no. 4, pp. 773-794 | DOI | Zbl

[7] David Harbater; Julia Hartmann; Daniel Krashen Local-global principles for Galois cohomology, Comment. Math. Helv., Volume 89 (2014) no. 1, pp. 215-253 | DOI | MR | Zbl

[8] Yong Hu A Cohomological Hasse Principle Over Two-dimensional Local Rings, Int. Math. Res. Not., Volume 2017 (2017) no. 14, pp. 4369-4397 | MR | Zbl

[9] James S. Milne Étale Cohomology, Princeton Mathematical Series, 33, Princeton University Press, 1980 | MR | Zbl

[10] Ivan A. Panin The equicharacteristic case of the Gersten conjecture, Tr. Mat. Inst. Im. V. A. Steklova, Volume 241 (2003) no. 2, pp. 169-178 | MR | Zbl

[11] Shuji Saito Arithmetic on two-dimensional local rings, Invent. Math., Volume 85 (1986), pp. 379-414 | DOI | MR | Zbl

[12] Makoto Sakagaito On problems about a generalization of the Brauer group (2016) (https://arxiv.org/abs/1511.09232v2)

[13] Makoto Sakagaito On a generalized Brauer group in mixed characteristic cases (2019) (https://arxiv.org/abs/1710.11449v2)

[14] Vladimir Voevodsky On motivic cohomology with Z/l-coefficients, Ann. Math., Volume 174 (2011) no. 1, pp. 401-438 | MR | Zbl

Cited by Sources:

Comments - Policy