Comptes Rendus
Équations aux dérivées partielles
Concerning the pathological set in the context of probabilistic well-posedness
Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 989-999.

On démontre un résultat complémentaire à ceux manifestant le caractère bien posé probabiliste de l’équation des ondes avec des données initiales de régularité de Sobolev super critique par rapport au changement d’échelle laissant invariant l’équation.

We prove a complementary result to the probabilistic well-posedness for the nonlinear wave equation. More precisely, we show that there is a dense set S of the Sobolev space of super-critical regularity such that (in sharp contrast with the probabilistic well-posedness results) the family of global smooth solutions, generated by the convolution with some approximate identity of the elements of S, does not converge in the space of super-critical Sobolev regularity.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.102

Chenmin Sun 1 ; Nikolay Tzvetkov 1

1 Université de Cergy-Pontoise, Laboratoire de Mathématiques AGM, UMR 8088 du CNRS, 2 av. Adolphe Chauvin 95302 Cergy-Pontoise Cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_9-10_989_0,
     author = {Chenmin Sun and Nikolay Tzvetkov},
     title = {Concerning the pathological set in the context of probabilistic well-posedness},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {989--999},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.102},
     language = {en},
}
TY  - JOUR
AU  - Chenmin Sun
AU  - Nikolay Tzvetkov
TI  - Concerning the pathological set in the context of probabilistic well-posedness
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 989
EP  - 999
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.102
LA  - en
ID  - CRMATH_2020__358_9-10_989_0
ER  - 
%0 Journal Article
%A Chenmin Sun
%A Nikolay Tzvetkov
%T Concerning the pathological set in the context of probabilistic well-posedness
%J Comptes Rendus. Mathématique
%D 2020
%P 989-999
%V 358
%N 9-10
%I Académie des sciences, Paris
%R 10.5802/crmath.102
%G en
%F CRMATH_2020__358_9-10_989_0
Chenmin Sun; Nikolay Tzvetkov. Concerning the pathological set in the context of probabilistic well-posedness. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 989-999. doi : 10.5802/crmath.102. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.102/

[1] Thomas Alazard; Rémi Carles Loss of regularity for supercritical nonlinear Schrödinger equations, Math. Ann., Volume 343 (2009) no. 2, pp. 397-420 | DOI | Zbl

[2] Árpad Bényi; Tahadiro Oh; Oana Pocovnicu On the probabilistic Cauchy theory of the cubic nonlinear Schrödinger equation on d , d3, Trans. Am. Math. Soc., Volume 2 (2015), pp. 1-50 | DOI | Zbl

[3] Jean Bourgain Invariant measures for the 2D-defocusing nonlinear Schrödinger equation, Commun. Math. Phys., Volume 176 (1996) no. 2, pp. 421-445 | DOI | Zbl

[4] Nicolas Burq; Nikolay Tzvetkov Random data Cauchy theory for supercritical wave equations I: local theory, Invent. Math., Volume 173 (2008) no. 3, pp. 449-475 | DOI | MR | Zbl

[5] Nicolas Burq; Nikolay Tzvetkov Probabilistic well-posedness for the cubic wave equation, J. Eur. Math. Soc. (JEMS), Volume 16 (2014) no. 1, pp. 1-30 | DOI | MR | Zbl

[6] Michael Christ; James Colliander; Terence Tao Ill-posedness for nonlinear Schrödinger and wave equations (2003) (https://arxiv.org/abs/math/0311048)

[7] James E. Colliander; Tahadiro Oh Almost sure local well-posedness of the cubic NLS below L 2 , Duke Math. J., Volume 161 (2012) no. 3, pp. 367-414 | DOI | Zbl

[8] Manoussos G. Grillakis Regularity and asymptotic behaviour of the wave equation with a critical non linearity, Ann. Math., Volume 132 (1990) no. 3, pp. 485-509 | DOI | MR | Zbl

[9] Mickaël Latocca Almost Sure Existence of Global Solutions for supercritical semilinear Wave Equations (2018) (https://arxiv.org/abs/1809.07061)

[10] Gilles Lebeau Nonlinear optic and supercritical wave equation, Bull. Soc. R. Sci. Liège, Volume 70 (2001) no. 4-6, pp. 267-306 | Zbl

[11] Gilles Lebeau Perte de régularité pour l’équation d’ondes sur-critiques, Bull. Soc. Math. Fr., Volume 133 (2005) no. 1, pp. 145-157 | DOI | Zbl

[12] Hans Lindblad A sharp counterexample to the local existence of low-regularity solutions to nonlinear wave equations, Duke Math. J., Volume 72 (1993) no. 2, pp. 503-539 | DOI | MR | Zbl

[13] Jonas Lührmann; D. ana Mendelson Random data Cauchy theory for nonlinear wave equations of power-type on 3 , Commun. Partial Differ. Equations, Volume 39 (2014) no. 12, pp. 2262-2283 | DOI | MR | Zbl

[14] Tahadiro Oh; Oana Pocovnicu Probabilistic global well-posedness of the energy-critical defocusing quintic nonlinear wave equation on 3 , J. Math. Pures Appl., Volume 105 (2016) no. 3, pp. 342-366 | MR | Zbl

[15] Jalal Shatah; Michael Struwe Well-posedness in the energy space for semilinear wave equation with critical growth, Int. Math. Res. Not., Volume 1094 (1994) no. 7, pp. 303-309 | DOI | MR | Zbl

[16] Chenmin Sun; Nikolay Tzvetkov New examples of probabilistic well-posedness for nonlinear wave equations, J. Funct. Anal., Volume 278 (2020) no. 2, 108322, 47 pages | MR | Zbl

[17] Chenmin Sun; Bo Xia Probabilistic well-posedness for supercritical wave equations with periodic boundary condition on dimension three, Ill. J. Math., Volume 60 (2016) no. 2, pp. 481-503 | MR | Zbl

[18] Nikolay Tzvetkov Random data wave equations, Lecture Notes in Mathematics, 2253, Springer, 2019, pp. 221-313 | MR

[19] Bo Xia Equations aux dérivées partielles et aléa, Ph. D. Thesis, Université Paris-Sud, (France) (2016)

Cité par Sources :

Commentaires - Politique