Comptes Rendus
Théorie du contrôle
Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay
Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1011-1032.

Ce travail exploite les propriétés structurelles d’une classe de matrices de Vandermonde fonctionnelles, pour mettre en évidence certaines propriétés qualitatives d’une classe d’équation différentielle d’ordre n, autonome linéaire avec un terme source dépendant de la variable retardée. Plus précisément, il traite de l’effet stabilisateur du paramètre de retard couplé à la coexistence du nombre maximal de valeurs spectrales réelles. Les conditions dérivées sont nécessaires et suffisantes et, à la connaissance des auteurs, représentent une nouveauté dans la littérature. Sous des conditions appropriées, une telle configuration caractérise l’abscisse spectrale correspondant à l’équation étudiée. Un nouveau critère de stabilité est proposé. Ce critère étend les résultats récents sur la factorisation de fonctions quasi-polynomiales. Le potentiel applicatif du procédé proposé est illustré par la stabilisation d’oscillateurs couplés.

This work exploits structural properties of a class of functional Vandermonde matrices to emphasize some qualitative properties of a class of linear autonomous n th order differential equation with forcing term consisting in the delayed dependent-variable. More precisely, it deals with the stabilizing effect of delay parameter coupled with the coexistence of the maximal number of real spectral values. The derived conditions are necessary and sufficient and, to the best of the authors’ knowledge, represent a novelty in the literature. Under appropriate conditions, such a configuration characterizes the spectral abscissa corresponding to the studied equation. A new stability criterion is proposed. This criterion extends recent results in factorizing quasipolynomial functions. The applicative potential of the proposed method is illustrated through the stabilization of coupled oscillators.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.112
Classification : 34K20, 39B82, 70Q05, 47N70

Fazia Bedouhene 1 ; Islam Boussaada 2, 3 ; Silviu-Iulian Niculescu 3

1 Laboratoire de Mathématiques Pures et Appliquées (LMPA), Mouloud Mammeri University of Tizi‐Ouzou, Tizi-Ouzou, BP No 17, RP 15000, Algeria
2 IPSA, Ivry sur Seine, France
3 Université Paris Saclay, L2S, CNRS-CentraleSupélec, Inria Saclay-Île-de-France, Equipe DISCO 91192 Gif-sur-Yvette cedex, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_9-10_1011_0,
     author = {Fazia Bedouhene and Islam Boussaada and Silviu-Iulian Niculescu},
     title = {Real spectral values coexistence and their effect on the stability of time-delay systems: {Vandermonde} matrices and exponential decay},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1011--1032},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {9-10},
     year = {2020},
     doi = {10.5802/crmath.112},
     language = {en},
}
TY  - JOUR
AU  - Fazia Bedouhene
AU  - Islam Boussaada
AU  - Silviu-Iulian Niculescu
TI  - Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 1011
EP  - 1032
VL  - 358
IS  - 9-10
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.112
LA  - en
ID  - CRMATH_2020__358_9-10_1011_0
ER  - 
%0 Journal Article
%A Fazia Bedouhene
%A Islam Boussaada
%A Silviu-Iulian Niculescu
%T Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay
%J Comptes Rendus. Mathématique
%D 2020
%P 1011-1032
%V 358
%N 9-10
%I Académie des sciences, Paris
%R 10.5802/crmath.112
%G en
%F CRMATH_2020__358_9-10_1011_0
Fazia Bedouhene; Islam Boussaada; Silviu-Iulian Niculescu. Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1011-1032. doi : 10.5802/crmath.112. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.112/

[1] Lars Valerian Ahlfors Complex Analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, McGraw-Hill, 1979 | Zbl

[2] Souad Amrane; Fazia Bedouhene; Islam Boussaada; Silviu-Iulian Niculescu On qualitative properties of low-degree quasipolynomials: further remarks on the spectral abscissa and rightmost-roots assignment, Bull. Math. Soc. Sci. Math. Roum., Volume 61(109) (2018) no. 4, pp. 361-381 | MR | Zbl

[3] Fazia Bedouhene; Islam Boussaada; Silviu-Iulian Niculescu On Pole Placement and Spectral Abscissa Characterization for Timedelay Systems, IFAC-PapersOnLine, Volume 52 (2019) no. 18, pp. 55-60 (Proceeding of the 15th IFAC Workshop on Time Delay Systems TDS 2019) | DOI

[4] Richard Bellman; Kenneth L. Cooke Differential-difference equations, Mathematics in Science and Engineering, 6, Academic Press Inc., 1963 | Zbl

[5] Islam Boussaada; Silviu-Iulian Niculescu Computing the Codimension of the Singularity at the Origin for Delay Systems: The Missing Link with Birkhoff IncidenceMatrices, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014 (2014), pp. 1-8

[6] Islam Boussaada; Silviu-Iulian Niculescu Characterizing the Codimension of Zero Singularities for Time-Delay Systems, Acta Appl. Math., Volume 145 (2016) no. 1, pp. 47-88 | DOI | Zbl

[7] Islam Boussaada; Silviu-Iulian Niculescu Tracking the Algebraic Multiplicity of Crossing Imaginary Roots for Generic Quasipolynomials: A Vandermonde-Based Approach, IEEE Trans. Autom. Control, Volume 61 (2016) no. 6, pp. 1601-1606 | DOI | MR | Zbl

[8] Islam Boussaada; Silviu-Iulian Niculescu On the Dominancy of Multiple Spectral Values for Time-delay Systems with Applications, IFAC-PapersOnLine, Volume 51 (2018) no. 14, pp. 55-60 (14th IFAC Workshop on Time Delay Systems TDS) | DOI

[9] Islam Boussaada; Silviu-Iulian Niculescu; El-Ati Ati; Redamy Perez-Ramos; Karim Trabelsi Multiplicity-Induced-Dominancy in parametric second-order delay differential equations: Analysis and application in control design (2019) (submitted, 34 pages) | Zbl

[10] Islam Boussaada; Silviu-Iulian Niculescu; Sami Tliba; Tomáš Vyhlídal On the Coalescence of Spectral Values and its Effect on the Stability of Time-delay Systems: Application to Active Vibration Control, Procedia IUTAM, Volume 22 (2017), pp. 75-82 | DOI

[11] Islam Boussaada; Silviu-Iulian Niculescu; Karim Trabelsi Toward a Decay Rate Assignment Based Design for Time-Delay Systems with Multiple Spectral Values, Proceeding of the 23rd International Symposium on Mathematical Theory of Networks and Systems (2018), pp. 864-871

[12] Islam Boussaada; Sami Tliba; Silviu-Iulian Niculescu; Hakki Ulas Ünal; Tomáš Vyhlídal Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. Application to the control of a mechanical system, Linear Algebra Appl., Volume 542 (2018), pp. 589-604 (Proceedings of the 20th ILAS Conference, Leuven, Belgium 2016) | DOI | MR | Zbl

[13] Islam Boussaada; H. Unal; Silviu-Iulian Niculescu Multiplicity and Stable Varieties of Time-delay Systems: A Missing Link, Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems (2016), pp. 1-6

[14] Kenneth L. Cooke; Pauline van den Driessche On zeroes of some transcendental equations, Funkc. Ekvacioj, Ser. Int., Volume 29 (1986) no. 1, pp. 77-90 | MR | Zbl

[15] Tiong Tong Ha; John A. Gibson A note on the determinant of a functional confluent Vandermonde matrix and controllability, Linear Algebra Appl., Volume 30 (1980), pp. 69-75 | DOI | MR | Zbl

[16] Jack K. Hale; Sjoerd M. Verduyn Lunel Introduction to functional differential equations, Applied Mathematical Sciences, 99, Springer, 1993 | MR | Zbl

[17] N. D. Hayes Roots of the Transcendental Equation Associated with a Certain Difference-Differential Equation, J. Lond. Math. Soc., Volume 25 (1950) no. 3, pp. 226-232 | DOI | MR | Zbl

[18] Thomas Kailath Linear Systems, Prentice-Hall information and system sciences series, Prentice Hall, 1998 | Zbl

[19] V. Kolmanovskii; V. Nosov Stability of Functional Differential Equations, Mathematics in Science and Engineering, 180, Academic Press Inc., 1986 | MR | Zbl

[20] B. Ya Levin Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5, American Mathematical Society, 1964 | Zbl

[21] Jean-Jacques Loiseau Invariant factors assignment for a class of time-delay systems, Kybernetika, Volume 37 (2001) no. 3, pp. 265-275 | MR | Zbl

[22] Andrzej Z. Manitius; Andrzej W. Olbrot Finite spectrum assignment problem for systems with delays, IEEE Trans. Autom. Control, Volume 24 (1979) no. 4, pp. 541-553 | DOI | MR | Zbl

[23] Wim Michiels; Koen Engelborghs; P. Vansevenant; Dirk Roose Continuous pole placement for delay equations, Automatica, Volume 38 (2002) no. 5, pp. 747-761 | DOI | MR | Zbl

[24] Wim Michiels; Silviu-Iulian Niculescu Stability and stabilization of time-delay systems, Advances in Design and Control, 12, Society for Industrial and Applied Mathematics, 2007 | MR | Zbl

[25] Sabine Mondié; Jean-Jacques Loiseau Finite spectrum assignment for input delay systems, IFAC Proceedings Volumes, Volume 34 (2001) no. 23, pp. 201-206 | DOI

[26] Takehiro Mori; Norio Fukuma; Michiyoshi Kuwahara On an estimate of the decay rate for stable linear delay systems, Int. J. Control, Volume 36 (1982), pp. 95-97 | DOI | MR | Zbl

[27] Silviu-Iulian Niculescu; Wim Michiels Stabilizing a chain of Integrators Using Multiple Delays, IEEE Trans. Autom. Control, Volume 49 (2004) no. 5, pp. 802-807 | DOI | MR | Zbl

[28] Silviu-Iulian Niculescu; Wim Michiels; Keqin Gu; Chaouki T. Abdallah Delay Effects on Output Feedback Control of Dynamical Systems, Complex Time-Delay Systems. Theory and Applications (Understanding Complex Systems), Springer, 2010, pp. 63-84 | Zbl

[29] Nikola Dimitrov Obreschkoff Nullstellen linearer Kombinationen von Exponential funktionen, Jber. der Deutsch. Math. Verein., Volume 37 (1928), pp. 81-84

[30] Peter John Olver On multivariate interpolation, Stud. Appl. Math., Volume 116 (2006) no. 2, pp. 201-240 | DOI | MR | Zbl

[31] Arkady Pikovsky; Michael Rosenblum; Jürgen Kurths Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12, Cambridge University Press, 2003 | Zbl

[32] George Pólya; Gábor Szegö Problems and Theorems in Analysis. Vol. I: Series, Integral Calculus, Theory of Functions, Grundlehren der Mathematischen Wissenschaften, 193, Springer, 1972 | MR | Zbl

[33] Lev Semënovich Pontrjagin On zeros of some transcendental functions, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 6 (1942) no. 3, pp. 115-134 | MR | Zbl

[34] Kestutis Pyragas Continuous control of chaos by self-controlling feedback, Phys. Lett., Volume 170 (1992) no. 6, pp. 421-428 | DOI

[35] Jerzy Stefan Respondek On the confluent Vandermonde matrix calculation algorithm, Appl. Math. Lett., Volume 24 (2011) no. 2, pp. 103-106 | DOI | MR | Zbl

[36] R. Sipahi; Silviu-Iulian Niculescu; Chaouki T. Abdallah; Wim Michiels; Keqin Gu Stability and stabilization of systems with time delay: limitations and opportunities, IEEE Control Sys., Volume 31 (2011) no. 1, pp. 38-65 | MR | Zbl

[37] Gábor Stépán Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Research Notes in Mathematics Series, 210, Longman Scientific & Technical; John Wiley & Sons, 1989 | MR | Zbl

[38] Ilhong Suh; Zeungman Bien Proportional minus delay controller, IEEE Trans. Autom. Control, Volume 24 (1979), pp. 370-372 | MR | Zbl

[39] K. Walton; J. E. Marshall Direct method for TDS stability analysis, IEE Proc., Part D, Volume 134 (1987) no. 2, pp. 101-107 | DOI | Zbl

[40] Pavel Zítek; Jaromír Fišer; Tomáš Vyhlídal Dimensional analysis approach to dominant three-pole placement in delayed PID control loops, J. Process Control, Volume 23 (2013) no. 8, pp. 1063-1074 | DOI

Cité par Sources :

Commentaires - Politique