Ce travail exploite les propriétés structurelles d’une classe de matrices de Vandermonde fonctionnelles, pour mettre en évidence certaines propriétés qualitatives d’une classe d’équation différentielle d’ordre , autonome linéaire avec un terme source dépendant de la variable retardée. Plus précisément, il traite de l’effet stabilisateur du paramètre de retard couplé à la coexistence du nombre maximal de valeurs spectrales réelles. Les conditions dérivées sont nécessaires et suffisantes et, à la connaissance des auteurs, représentent une nouveauté dans la littérature. Sous des conditions appropriées, une telle configuration caractérise l’abscisse spectrale correspondant à l’équation étudiée. Un nouveau critère de stabilité est proposé. Ce critère étend les résultats récents sur la factorisation de fonctions quasi-polynomiales. Le potentiel applicatif du procédé proposé est illustré par la stabilisation d’oscillateurs couplés.
This work exploits structural properties of a class of functional Vandermonde matrices to emphasize some qualitative properties of a class of linear autonomous order differential equation with forcing term consisting in the delayed dependent-variable. More precisely, it deals with the stabilizing effect of delay parameter coupled with the coexistence of the maximal number of real spectral values. The derived conditions are necessary and sufficient and, to the best of the authors’ knowledge, represent a novelty in the literature. Under appropriate conditions, such a configuration characterizes the spectral abscissa corresponding to the studied equation. A new stability criterion is proposed. This criterion extends recent results in factorizing quasipolynomial functions. The applicative potential of the proposed method is illustrated through the stabilization of coupled oscillators.
Révisé le :
Accepté le :
Publié le :
Fazia Bedouhene 1 ; Islam Boussaada 2, 3 ; Silviu-Iulian Niculescu 3
@article{CRMATH_2020__358_9-10_1011_0, author = {Fazia Bedouhene and Islam Boussaada and Silviu-Iulian Niculescu}, title = {Real spectral values coexistence and their effect on the stability of time-delay systems: {Vandermonde} matrices and exponential decay}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1032}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.112}, language = {en}, }
TY - JOUR AU - Fazia Bedouhene AU - Islam Boussaada AU - Silviu-Iulian Niculescu TI - Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay JO - Comptes Rendus. Mathématique PY - 2020 SP - 1011 EP - 1032 VL - 358 IS - 9-10 PB - Académie des sciences, Paris DO - 10.5802/crmath.112 LA - en ID - CRMATH_2020__358_9-10_1011_0 ER -
%0 Journal Article %A Fazia Bedouhene %A Islam Boussaada %A Silviu-Iulian Niculescu %T Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay %J Comptes Rendus. Mathématique %D 2020 %P 1011-1032 %V 358 %N 9-10 %I Académie des sciences, Paris %R 10.5802/crmath.112 %G en %F CRMATH_2020__358_9-10_1011_0
Fazia Bedouhene; Islam Boussaada; Silviu-Iulian Niculescu. Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1011-1032. doi : 10.5802/crmath.112. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.112/
[1] Complex Analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, McGraw-Hill, 1979 | Zbl
[2] On qualitative properties of low-degree quasipolynomials: further remarks on the spectral abscissa and rightmost-roots assignment, Bull. Math. Soc. Sci. Math. Roum., Volume 61(109) (2018) no. 4, pp. 361-381 | MR | Zbl
[3] On Pole Placement and Spectral Abscissa Characterization for Timedelay Systems, IFAC-PapersOnLine, Volume 52 (2019) no. 18, pp. 55-60 (Proceeding of the 15th IFAC Workshop on Time Delay Systems TDS 2019) | DOI
[4] Differential-difference equations, Mathematics in Science and Engineering, 6, Academic Press Inc., 1963 | Zbl
[5] Computing the Codimension of the Singularity at the Origin for Delay Systems: The Missing Link with Birkhoff IncidenceMatrices, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014 (2014), pp. 1-8
[6] Characterizing the Codimension of Zero Singularities for Time-Delay Systems, Acta Appl. Math., Volume 145 (2016) no. 1, pp. 47-88 | DOI | Zbl
[7] Tracking the Algebraic Multiplicity of Crossing Imaginary Roots for Generic Quasipolynomials: A Vandermonde-Based Approach, IEEE Trans. Autom. Control, Volume 61 (2016) no. 6, pp. 1601-1606 | DOI | MR | Zbl
[8] On the Dominancy of Multiple Spectral Values for Time-delay Systems with Applications, IFAC-PapersOnLine, Volume 51 (2018) no. 14, pp. 55-60 (14th IFAC Workshop on Time Delay Systems TDS) | DOI
[9] Multiplicity-Induced-Dominancy in parametric second-order delay differential equations: Analysis and application in control design (2019) (submitted, 34 pages) | Zbl
[10] On the Coalescence of Spectral Values and its Effect on the Stability of Time-delay Systems: Application to Active Vibration Control, Procedia IUTAM, Volume 22 (2017), pp. 75-82 | DOI
[11] Toward a Decay Rate Assignment Based Design for Time-Delay Systems with Multiple Spectral Values, Proceeding of the 23rd International Symposium on Mathematical Theory of Networks and Systems (2018), pp. 864-871
[12] Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. Application to the control of a mechanical system, Linear Algebra Appl., Volume 542 (2018), pp. 589-604 (Proceedings of the 20th ILAS Conference, Leuven, Belgium 2016) | DOI | MR | Zbl
[13] Multiplicity and Stable Varieties of Time-delay Systems: A Missing Link, Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems (2016), pp. 1-6
[14] On zeroes of some transcendental equations, Funkc. Ekvacioj, Ser. Int., Volume 29 (1986) no. 1, pp. 77-90 | MR | Zbl
[15] A note on the determinant of a functional confluent Vandermonde matrix and controllability, Linear Algebra Appl., Volume 30 (1980), pp. 69-75 | DOI | MR | Zbl
[16] Introduction to functional differential equations, Applied Mathematical Sciences, 99, Springer, 1993 | MR | Zbl
[17] Roots of the Transcendental Equation Associated with a Certain Difference-Differential Equation, J. Lond. Math. Soc., Volume 25 (1950) no. 3, pp. 226-232 | DOI | MR | Zbl
[18] Linear Systems, Prentice-Hall information and system sciences series, Prentice Hall, 1998 | Zbl
[19] Stability of Functional Differential Equations, Mathematics in Science and Engineering, 180, Academic Press Inc., 1986 | MR | Zbl
[20] Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5, American Mathematical Society, 1964 | Zbl
[21] Invariant factors assignment for a class of time-delay systems, Kybernetika, Volume 37 (2001) no. 3, pp. 265-275 | MR | Zbl
[22] Finite spectrum assignment problem for systems with delays, IEEE Trans. Autom. Control, Volume 24 (1979) no. 4, pp. 541-553 | DOI | MR | Zbl
[23] Continuous pole placement for delay equations, Automatica, Volume 38 (2002) no. 5, pp. 747-761 | DOI | MR | Zbl
[24] Stability and stabilization of time-delay systems, Advances in Design and Control, 12, Society for Industrial and Applied Mathematics, 2007 | MR | Zbl
[25] Finite spectrum assignment for input delay systems, IFAC Proceedings Volumes, Volume 34 (2001) no. 23, pp. 201-206 | DOI
[26] On an estimate of the decay rate for stable linear delay systems, Int. J. Control, Volume 36 (1982), pp. 95-97 | DOI | MR | Zbl
[27] Stabilizing a chain of Integrators Using Multiple Delays, IEEE Trans. Autom. Control, Volume 49 (2004) no. 5, pp. 802-807 | DOI | MR | Zbl
[28] Delay Effects on Output Feedback Control of Dynamical Systems, Complex Time-Delay Systems. Theory and Applications (Understanding Complex Systems), Springer, 2010, pp. 63-84 | Zbl
[29] Nullstellen linearer Kombinationen von Exponential funktionen, Jber. der Deutsch. Math. Verein., Volume 37 (1928), pp. 81-84
[30] On multivariate interpolation, Stud. Appl. Math., Volume 116 (2006) no. 2, pp. 201-240 | DOI | MR | Zbl
[31] Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12, Cambridge University Press, 2003 | Zbl
[32] Problems and Theorems in Analysis. Vol. I: Series, Integral Calculus, Theory of Functions, Grundlehren der Mathematischen Wissenschaften, 193, Springer, 1972 | MR | Zbl
[33] On zeros of some transcendental functions, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 6 (1942) no. 3, pp. 115-134 | MR | Zbl
[34] Continuous control of chaos by self-controlling feedback, Phys. Lett., Volume 170 (1992) no. 6, pp. 421-428 | DOI
[35] On the confluent Vandermonde matrix calculation algorithm, Appl. Math. Lett., Volume 24 (2011) no. 2, pp. 103-106 | DOI | MR | Zbl
[36] Stability and stabilization of systems with time delay: limitations and opportunities, IEEE Control Sys., Volume 31 (2011) no. 1, pp. 38-65 | MR | Zbl
[37] Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Research Notes in Mathematics Series, 210, Longman Scientific & Technical; John Wiley & Sons, 1989 | MR | Zbl
[38] Proportional minus delay controller, IEEE Trans. Autom. Control, Volume 24 (1979), pp. 370-372 | MR | Zbl
[39] Direct method for TDS stability analysis, IEE Proc., Part D, Volume 134 (1987) no. 2, pp. 101-107 | DOI | Zbl
[40] Dimensional analysis approach to dominant three-pole placement in delayed PID control loops, J. Process Control, Volume 23 (2013) no. 8, pp. 1063-1074 | DOI
Cité par Sources :
Commentaires - Politique