Ce travail exploite les propriétés structurelles d’une classe de matrices de Vandermonde fonctionnelles, pour mettre en évidence certaines propriétés qualitatives d’une classe d’équation différentielle d’ordre
This work exploits structural properties of a class of functional Vandermonde matrices to emphasize some qualitative properties of a class of linear autonomous
Révisé le :
Accepté le :
Publié le :
Fazia Bedouhene 1 ; Islam Boussaada 2, 3 ; Silviu-Iulian Niculescu 3

@article{CRMATH_2020__358_9-10_1011_0, author = {Fazia Bedouhene and Islam Boussaada and Silviu-Iulian Niculescu}, title = {Real spectral values coexistence and their effect on the stability of time-delay systems: {Vandermonde} matrices and exponential decay}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1032}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {9-10}, year = {2020}, doi = {10.5802/crmath.112}, language = {en}, }
TY - JOUR AU - Fazia Bedouhene AU - Islam Boussaada AU - Silviu-Iulian Niculescu TI - Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay JO - Comptes Rendus. Mathématique PY - 2020 SP - 1011 EP - 1032 VL - 358 IS - 9-10 PB - Académie des sciences, Paris DO - 10.5802/crmath.112 LA - en ID - CRMATH_2020__358_9-10_1011_0 ER -
%0 Journal Article %A Fazia Bedouhene %A Islam Boussaada %A Silviu-Iulian Niculescu %T Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay %J Comptes Rendus. Mathématique %D 2020 %P 1011-1032 %V 358 %N 9-10 %I Académie des sciences, Paris %R 10.5802/crmath.112 %G en %F CRMATH_2020__358_9-10_1011_0
Fazia Bedouhene; Islam Boussaada; Silviu-Iulian Niculescu. Real spectral values coexistence and their effect on the stability of time-delay systems: Vandermonde matrices and exponential decay. Comptes Rendus. Mathématique, Volume 358 (2020) no. 9-10, pp. 1011-1032. doi : 10.5802/crmath.112. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.112/
[1] Complex Analysis. An introduction to the theory of analytic functions of one complex variable, International Series in Pure and Applied Mathematics, McGraw-Hill, 1979 | Zbl
[2] On qualitative properties of low-degree quasipolynomials: further remarks on the spectral abscissa and rightmost-roots assignment, Bull. Math. Soc. Sci. Math. Roum., Volume 61(109) (2018) no. 4, pp. 361-381 | MR | Zbl
[3] On Pole Placement and Spectral Abscissa Characterization for Timedelay Systems, IFAC-PapersOnLine, Volume 52 (2019) no. 18, pp. 55-60 (Proceeding of the 15th IFAC Workshop on Time Delay Systems TDS 2019) | DOI
[4] Differential-difference equations, Mathematics in Science and Engineering, 6, Academic Press Inc., 1963 | Zbl
[5] Computing the Codimension of the Singularity at the Origin for Delay Systems: The Missing Link with Birkhoff IncidenceMatrices, Proceedings of the 21st International Symposium on Mathematical Theory of Networks and Systems, MTNS 2014 (2014), pp. 1-8
[6] Characterizing the Codimension of Zero Singularities for Time-Delay Systems, Acta Appl. Math., Volume 145 (2016) no. 1, pp. 47-88 | DOI | Zbl
[7] Tracking the Algebraic Multiplicity of Crossing Imaginary Roots for Generic Quasipolynomials: A Vandermonde-Based Approach, IEEE Trans. Autom. Control, Volume 61 (2016) no. 6, pp. 1601-1606 | DOI | MR | Zbl
[8] On the Dominancy of Multiple Spectral Values for Time-delay Systems with Applications, IFAC-PapersOnLine, Volume 51 (2018) no. 14, pp. 55-60 (14th IFAC Workshop on Time Delay Systems TDS) | DOI
[9] Multiplicity-Induced-Dominancy in parametric second-order delay differential equations: Analysis and application in control design (2019) (submitted, 34 pages) | Zbl
[10] On the Coalescence of Spectral Values and its Effect on the Stability of Time-delay Systems: Application to Active Vibration Control, Procedia IUTAM, Volume 22 (2017), pp. 75-82 | DOI
[11] Toward a Decay Rate Assignment Based Design for Time-Delay Systems with Multiple Spectral Values, Proceeding of the 23rd International Symposium on Mathematical Theory of Networks and Systems (2018), pp. 864-871
[12] Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. Application to the control of a mechanical system, Linear Algebra Appl., Volume 542 (2018), pp. 589-604 (Proceedings of the 20th ILAS Conference, Leuven, Belgium 2016) | DOI | MR | Zbl
[13] Multiplicity and Stable Varieties of Time-delay Systems: A Missing Link, Proceeding of the 22nd International Symposium on Mathematical Theory of Networks and Systems (2016), pp. 1-6
[14] On zeroes of some transcendental equations, Funkc. Ekvacioj, Ser. Int., Volume 29 (1986) no. 1, pp. 77-90 | MR | Zbl
[15] A note on the determinant of a functional confluent Vandermonde matrix and controllability, Linear Algebra Appl., Volume 30 (1980), pp. 69-75 | DOI | MR | Zbl
[16] Introduction to functional differential equations, Applied Mathematical Sciences, 99, Springer, 1993 | MR | Zbl
[17] Roots of the Transcendental Equation Associated with a Certain Difference-Differential Equation, J. Lond. Math. Soc., Volume 25 (1950) no. 3, pp. 226-232 | DOI | MR | Zbl
[18] Linear Systems, Prentice-Hall information and system sciences series, Prentice Hall, 1998 | Zbl
[19] Stability of Functional Differential Equations, Mathematics in Science and Engineering, 180, Academic Press Inc., 1986 | MR | Zbl
[20] Distribution of zeros of entire functions, Translations of Mathematical Monographs, 5, American Mathematical Society, 1964 | Zbl
[21] Invariant factors assignment for a class of time-delay systems, Kybernetika, Volume 37 (2001) no. 3, pp. 265-275 | MR | Zbl
[22] Finite spectrum assignment problem for systems with delays, IEEE Trans. Autom. Control, Volume 24 (1979) no. 4, pp. 541-553 | DOI | MR | Zbl
[23] Continuous pole placement for delay equations, Automatica, Volume 38 (2002) no. 5, pp. 747-761 | DOI | MR | Zbl
[24] Stability and stabilization of time-delay systems, Advances in Design and Control, 12, Society for Industrial and Applied Mathematics, 2007 | MR | Zbl
[25] Finite spectrum assignment for input delay systems, IFAC Proceedings Volumes, Volume 34 (2001) no. 23, pp. 201-206 | DOI
[26] On an estimate of the decay rate for stable linear delay systems, Int. J. Control, Volume 36 (1982), pp. 95-97 | DOI | MR | Zbl
[27] Stabilizing a chain of Integrators Using Multiple Delays, IEEE Trans. Autom. Control, Volume 49 (2004) no. 5, pp. 802-807 | DOI | MR | Zbl
[28] Delay Effects on Output Feedback Control of Dynamical Systems, Complex Time-Delay Systems. Theory and Applications (Understanding Complex Systems), Springer, 2010, pp. 63-84 | Zbl
[29] Nullstellen linearer Kombinationen von Exponential funktionen, Jber. der Deutsch. Math. Verein., Volume 37 (1928), pp. 81-84
[30] On multivariate interpolation, Stud. Appl. Math., Volume 116 (2006) no. 2, pp. 201-240 | DOI | MR | Zbl
[31] Synchronization: A Universal Concept in Nonlinear Sciences, Cambridge Nonlinear Science Series, 12, Cambridge University Press, 2003 | Zbl
[32] Problems and Theorems in Analysis. Vol. I: Series, Integral Calculus, Theory of Functions, Grundlehren der Mathematischen Wissenschaften, 193, Springer, 1972 | MR | Zbl
[33] On zeros of some transcendental functions, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 6 (1942) no. 3, pp. 115-134 | MR | Zbl
[34] Continuous control of chaos by self-controlling feedback, Phys. Lett., Volume 170 (1992) no. 6, pp. 421-428 | DOI
[35] On the confluent Vandermonde matrix calculation algorithm, Appl. Math. Lett., Volume 24 (2011) no. 2, pp. 103-106 | DOI | MR | Zbl
[36] Stability and stabilization of systems with time delay: limitations and opportunities, IEEE Control Sys., Volume 31 (2011) no. 1, pp. 38-65 | MR | Zbl
[37] Retarded Dynamical Systems: Stability and Characteristic Functions, Pitman Research Notes in Mathematics Series, 210, Longman Scientific & Technical; John Wiley & Sons, 1989 | MR | Zbl
[38] Proportional minus delay controller, IEEE Trans. Autom. Control, Volume 24 (1979), pp. 370-372 | MR | Zbl
[39] Direct method for TDS stability analysis, IEE Proc., Part D, Volume 134 (1987) no. 2, pp. 101-107 | DOI | Zbl
[40] Dimensional analysis approach to dominant three-pole placement in delayed PID control loops, J. Process Control, Volume 23 (2013) no. 8, pp. 1063-1074 | DOI
Cité par Sources :
Commentaires - Politique