[Sur la cohomologie de Morse-Novikov des éclatements de variétés complexes]
Inspiré par les récents travaux de S. Rao, S. Yang, X.-D. Yang et L. Meng sur les formules donnant le comportement des groupes de cohomologie de de Rham et Morse-Novikov dans les éclatements, nous donnons une nouvelle preuve simple de la formule pour la cohomologie de Morse-Novikov en introduisant le groupe de cohomologie de Morse-Novikov relatif via la cohomologie des faisceaux et en explicitant l’isomorphisme de la formule.
Inspired by the recent works of S. Rao–S. Yang–X.-D. Yang and L. Meng on the blow-up formulae for de Rham and Morse–Novikov cohomology groups, we give a new simple proof of the blow-up formula for Morse–Novikov cohomology by introducing the relative Morse–Novikov cohomology group via sheaf cohomology theory and presenting the explicit isomorphism therein.
Révisé le :
Accepté le :
Publié le :
Yongpan Zou 1
@article{CRMATH_2020__358_1_67_0, author = {Yongpan Zou}, title = {On the {Morse{\textendash}Novikov} {Cohomology} of blowing up complex manifolds}, journal = {Comptes Rendus. Math\'ematique}, pages = {67--77}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.12}, language = {en}, }
Yongpan Zou. On the Morse–Novikov Cohomology of blowing up complex manifolds. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 67-77. doi : 10.5802/crmath.12. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.12/
[1] Hodge theory for twisted differentials, Complex Manifolds, Volume 1 (2014), pp. 64-85 | MR | Zbl
[2] On the metric structure of non-Kähler complex surfaces, Math. Ann., Volume 317 (2000) no. 1, pp. 1-40 | DOI | MR | Zbl
[3] Sheaf theory, Graduate Texts in Mathematics, 170, Springer, 1997 | MR | Zbl
[4] Géométrie des algèbres de Lie locales de Kirillov, J. Math. Pures Appl., IX. Sér., Volume 63 (1984) no. 4, pp. 407-484 | Zbl
[5] Cohomology of sheaves, Universitext, Springer, 1986 | Zbl
[6] Introduction to smooth manifolds, Graduate Texts in Mathematics, 218, Springer, 2013 | MR | Zbl
[7] Les variétés de Poisson et leurs algébres de Lie associées, J. Differ. Geom., Volume 12 (1977), pp. 253-300 | DOI | Zbl
[8] Morse-Novikov cohomology for blow-ups of complex manifolds, (2018) (https://arxiv.org/abs/1806.06622v3)
[9] Mayer–Vietoris systems and their applications (2019) (https://arxiv.org/abs/1811.10500v3)
[10] The Hamiltonian formalism and a multivalued analogue of Morse theory (Russian), Usp. Mat. Nauk, Volume 37 (1982) no. 5, pp. 3-43 | Zbl
[11] Classification of non-Kähler surfaces and locally conformally Kähler geometry (2018) (https://arxiv.org/abs/1810.05768v2)
[12] Dolbeault cohomologies of blowing up complex manifolds, J. Math. Pures Appl., Volume 130 (2019), pp. 68-92 | MR | Zbl
[13] Dolbeault cohomologies of blowing up complex manifolds II: bundle-valued case, J. Math. Pures Appl., Volume 130 (2020), pp. 1-38 | DOI | MR | Zbl
[14] Hodge cohomology on blow-ups along subvarieties (2019) (https://arxiv.org/abs/1907.13281)
[15] Hodge theory and complex algebraic geometry. I, Cambridge Studies in Advanced Mathematics, 76, Cambridge University Press, 2002 (translated from the French original by Leila Schneps) | MR | Zbl
[16] Comparison of de Rham and Dolbeault cohomology for proper surjective mappings, Pac. J. Math., Volume 53 (1974), pp. 281-300 | DOI | MR | Zbl
[17] A note on the Morse-Novikov cohomology of blow-ups of locally conformal Kähler manifolds, Bull. Aust. Math. Soc., Volume 91 (2015) no. 1, pp. 155-166 | DOI | Zbl
[18] Morse–Novikov cohomology of blowing up complex manifolds and deformation of CR structure, Masters thesis, Wuhan University (2019)
Cité par Sources :
Commentaires - Politique