logo CRAS
Comptes Rendus. Mathématique
Analyse et géométrie complexes
Support points of some classes of analytic and univalent functions
Comptes Rendus. Mathématique, Tome 359 (2021) no. 4, pp. 465-473.

Let 𝒜 denote the class of analytic functions in the unit disk 𝔻:={z:|z|<1} satisfying f(0)=0 and f (0)=1. Let 𝒰 be the class of functions f𝒜 satisfying

f (z)z f(z) 2 -1<1forz𝔻,

and 𝒢 denote the class of functions f𝒜 satisfying

1+zf (z) f (z)>-1 2forz𝔻.

In the present paper, we characterize the set of support points of the classes 𝒰 and 𝒢.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.181
Classification : 30C45,  30C50
Vasudevarao Allu 1 ; Abhishek Pandey 1

1. School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Bhubaneswar, PIN-752050, Odisha (State), India
@article{CRMATH_2021__359_4_465_0,
     author = {Vasudevarao Allu and Abhishek Pandey},
     title = {Support points of some classes of analytic and univalent functions},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {465--473},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {4},
     year = {2021},
     doi = {10.5802/crmath.181},
     zbl = {07362166},
     language = {en},
}
TY  - JOUR
AU  - Vasudevarao Allu
AU  - Abhishek Pandey
TI  - Support points of some classes of analytic and univalent functions
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 465
EP  - 473
VL  - 359
IS  - 4
PB  - Académie des sciences, Paris
UR  - https://zbmath.org/?q=an%3A07362166
UR  - https://doi.org/10.5802/crmath.181
DO  - 10.5802/crmath.181
LA  - en
ID  - CRMATH_2021__359_4_465_0
ER  - 
%0 Journal Article
%A Vasudevarao Allu
%A Abhishek Pandey
%T Support points of some classes of analytic and univalent functions
%J Comptes Rendus. Mathématique
%D 2021
%P 465-473
%V 359
%N 4
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.181
%R 10.5802/crmath.181
%G en
%F CRMATH_2021__359_4_465_0
Vasudevarao Allu; Abhishek Pandey. Support points of some classes of analytic and univalent functions. Comptes Rendus. Mathématique, Tome 359 (2021) no. 4, pp. 465-473. doi : 10.5802/crmath.181. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.181/

[1] Yusuf Abu-Muhanna; Liulan Li; Saminathan Ponnusamy Extremal problems on the class of convex functions of order -1/2, Arch. Math., Volume 103 (2014) no. 6, pp. 461-471 | MR 3284304 | Zbl 1303.30015

[2] Leonid A. Akesent’ev Sufficient conditions for univalence of certain integral representations (Russian), Izv. Vyssh. Uchebn. Zaved., Mat., Volume 3(4) (1958), pp. 3-7 | Zbl 0126.09004

[3] James W. Alexander Functions which maps the interior of the unit circle upon simple regions, Ann. Math., Volume 17 (1915), pp. 12-22 | Article | MR 1503516 | Zbl 45.0672.02

[4] S. Vaidhyanathan Bharanedhar; Saminathan Ponnusamy Uniform close-to-convexity radius of sections of functions in the close-to-convex family, J. Ramanujan Math. Soc., Volume 29 (2014) no. 3, pp. 243-251 | MR 3265059 | Zbl 1301.30011

[5] Louis Brickman; Thomas H. MacGregor; Donald R. Wilken Convex hull of some classical family of univalent functions, Trans. Am. Math. Soc., Volume 156 (1971), pp. 91-107 | Article | Zbl 0227.30013

[6] Daouh H. Bshouty; Abdallah Lyzzaik close-to-convexity criteria for planar harmonic mappings, Complex Anal. Oper. Theory, Volume 5 (2011) no. 3, pp. 767-774 | Article | MR 2836322 | Zbl 1279.30011

[7] Paul C. Cochrane; Thomas H. MacGregor Fretchet differentiable functionals and support points for families of analytic functions, Trans. Am. Math. Soc., Volume 236 (1978), pp. 75-92 | Zbl 0377.30010

[8] Hua Deng; Saminathan Ponnusamy; Jinjing Qiao Extreme points and support points of families of harmonic Bloch mappings, Potential Anal. (2020) | Article

[9] Nelson Dunford; Jacob T. Schwartz Linear operators. Part I: General theory (With the assistence of William G. Bade and Robert G. Bartle), Pure and Applied Mathematics, 7, Interscience Publishers, 1958 | Zbl 0084.10402

[10] Md Ali Firoz; Allu Vasudevarao; Hiroshi Yanagihara On a class of univalent functions defined by a differential inequality, J. Ramanujan Math. Soc., Volume 35 (2020) no. 3, pp. 217-226 | MR 4166709 | Zbl 07316488

[11] Eckhard Grassman; Walter Hengartner; Glenn E. Schober Support points of the class of close-to-convex functions, Can. Math. Bull., Volume 19 (1976), pp. 177-179 | Article | MR 486471 | Zbl 0339.30009

[12] David J. Hallenbeck; Thomas H. MacGregor Linear problem and convexity techniques in geometric function theory, Monographs and Studies in Mathematics, 22, Pitman Advanced Publishing Program, 1984 | MR 768747 | Zbl 0581.30001

[13] David J. Hallenbeck; Shelton Perera; Donald R. Wilken Subordination, Extreme points and support points, Complex Variables, Theory Appl., Volume 11 (1989) no. 2, pp. 111-124 | Article | MR 1005665 | Zbl 0672.30021

[14] Shigeo Ozaki; Mamoru Nunokawa The Schwarzian derivative and univalent functions, Proc. Am. Math. Soc., Volume 33 (1972), pp. 392-394 | Article | MR 299773 | Zbl 0233.30011

[15] Saminathan Ponnusamy; Swadesh K. Sahoo; Hiroshi Yanagihara Radius of convexity of partial sums of functions in the close-to-convex family, Nonlinear Anal., Theory Methods Appl., Volume 95 (2014), pp. 219-228 | Article | MR 3130518 | Zbl 1291.30096

[16] Derek K. Thomas; Nikola Tuneski; Allu Vasudevarao Univalent functions. A primer, De Gruyter Studies in Mathematics, 69, Walter de Gruyter, 2018 | Zbl 1397.30002

[17] Toshio Umezama Analytic functions convex in one direction, J. Math. Soc. Japan, Volume 4 (1952), pp. 194-202 | MR 51313 | Zbl 0047.31801

[18] Allu Vasudevarao; Abhishek Pandey The Zalcman conjecture for certain analytic and univalent functions, J. Math. Anal. Appl., Volume 492 (2020) no. 2, 124466 | MR 4144258 | Zbl 1450.30031

[19] Donald R. Wilken; R. J. M. Hornblower On the support points of close-to-convex functions, Houston J. Math., Volume 10 (1984) no. 4, pp. 593-599 | MR 774722 | Zbl 0554.30006

Cité par Sources :