Dans cet article, nous établissons une certaine inégalité en termes de nombres de Betti d’une -variété hamiltonienne avec des points fixes isolés.
In this paper, we establish a certain inequality in terms of Betti numbers of a closed Hamiltonian -manifold with isolated fixed points.
Révisé le :
Accepté le :
Publié le :
Yunhyung Cho 1
@article{CRMATH_2021__359_2_113_0, author = {Yunhyung Cho}, title = {Remark on the {Betti} numbers for {Hamiltonian} circle actions}, journal = {Comptes Rendus. Math\'ematique}, pages = {113--117}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.127}, language = {en}, }
Yunhyung Cho. Remark on the Betti numbers for Hamiltonian circle actions. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 113-117. doi : 10.5802/crmath.127. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.127/
[1] The moment map and equivariant cohomology, Topology, Volume 23 (1984) no. 1, pp. 1-28 | DOI | MR | Zbl
[2] Topology of Torus actions on symplectic manifolds Second revised edition, Progress in Mathematics, 93, Birkhäuser, 2004 | Zbl
[3] Classes charactéristiques équivariantes. Formule de localisation en cohomologie équivariante, C. R. Math. Acad. Sci. Paris, Volume 295 (1982), pp. 539-541 | Zbl
[4] Unimodality of Betti numbers for Hamiltonian circle actions with index-increasing moment maps, Int. J. Math., Volume 27 (2016) no. 5, 1650043, 14 pages | MR | Zbl
[5] Classification of six dimensional monotone symplectic manifolds admitting semifree circle actions I, Int. J. Math., Volume 30 (2019) no. 6, 1950032, 71 pages | MR | Zbl
[6] Classification of six dimensional monotone symplectic manifolds admitting semifree circle actions II (2021) (https://arxiv.org/abs/1904.10962, to appear in International Journal of Mathematics)
[7] Classification of six dimensional monotone symplectic manifolds admitting semifree circle actions III (2021) (https://arxiv.org/abs/1905.07292, to appear in International Journal of Mathematics) | MR
[8] Unimodality of the Betti numbers for Hamiltonian circle action with isolated fixed points, Math. Res. Lett., Volume 21 (2014) no. 4, pp. 691-696 | MR | Zbl
[9] Hamiltoniens périodiques et images convexes de l’application moment, Bull. Soc. Math. Fr., Volume 116 (1988) no. 3, pp. 315-339 | DOI | Zbl
[10] GKM theory and Hamiltonian non-Kähler actions in dimension 6, Adv. Math., Volume 368 (2020), 107141 | Zbl
[11] Towards Generalizing Schubert Calculus in the Symplectic Category, J. Symplectic Geom., Volume 7 (2009) no. 4, pp. 449-473 | DOI | MR | Zbl
[12] Moment maps in various geometries, 2005 (available at http://www.birs.ca/workshops/2005/05w5072/report05w5072.pdf)
[13] Periodic Hamiltonian flows on four-dimensional manifolds, Memoirs of the American Mathematical Society, 672, American Mathematical Society, 1999 | MR | Zbl
[14] Cohomology of quotients in symplectic and algebraic geometry, Mathematical Notes, 31, Princeton University Press, 1984 | MR | Zbl
[15] Some 6-dimensional Hamiltonian -manifolds, J. Topol., Volume 2 (2009) no. 3, pp. 589-623 | DOI | MR | Zbl
[16] Topological properties of Hamiltonian circle actions, Int. Math. Res. Pap., Volume 2006 (2006) no. 4, 72826 | Zbl
[17] Examples of non-Kähler Hamiltonian torus actions, Invent. Math., Volume 131 (1998) no. 2, pp. 299-310 | DOI | MR | Zbl
[18] On a symplectic generalization of Petrie’s conjecture, Trans. Am. Math. Soc., Volume 362 (2010) no. 8, pp. 3963-3996 | DOI | MR | Zbl
[19] Multiplicity-free Hamiltonian actions need not be Kähler, Invent. Math., Volume 131 (1998) no. 2, pp. 311-319 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique