A nonlinear Korn inequality on a surface estimates a distance between a surface and another surface in terms of distances between their fundamental forms in the space , .
We establish a new inequality of this type. The novelty is that the immersion belongs to a specific set of mappings of class from into with a unit vector field also of class over .
Une inégalité de Korn non linéaire sur une surface estime une distance entre une surface et une autre surface en fonction des distances entre leur formes fondamentales dans l’espace , .
Nous établissons une nouvelle inégalité de ce type. La nouveauté réside dans l’appartenance de l’immersion à un ensemble particulier d’applications de classe de dans avec un champ de vecteurs normaux unitaires aussi de classe dans .
Accepted:
Published online:
Maria Malin 1; Cristinel Mardare 2
@article{CRMATH_2021__359_2_105_0, author = {Maria Malin and Cristinel Mardare}, title = {A nonlinear {Korn} inequality on a surface with an explicit estimate of the constant}, journal = {Comptes Rendus. Math\'ematique}, pages = {105--111}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.122}, language = {en}, }
TY - JOUR AU - Maria Malin AU - Cristinel Mardare TI - A nonlinear Korn inequality on a surface with an explicit estimate of the constant JO - Comptes Rendus. Mathématique PY - 2021 SP - 105 EP - 111 VL - 359 IS - 2 PB - Académie des sciences, Paris DO - 10.5802/crmath.122 LA - en ID - CRMATH_2021__359_2_105_0 ER -
Maria Malin; Cristinel Mardare. A nonlinear Korn inequality on a surface with an explicit estimate of the constant. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 105-111. doi : 10.5802/crmath.122. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.122/
[1] Sobolev Spaces, Pure and Applied Mathematics, 65, Academic Press Inc., 1975 | MR | Zbl
[2] The infinitesimal rigid displacement lemma in Lipschitz coordinates and application to shells with minimal regularity, Math. Methods Appl. Sci., Volume 27 (2004) no. 4, pp. 1283-1299 | DOI | Zbl
[3] A nonlinear Korn inequality on a surface, J. Math. Pures Appl., Volume 85 (2006) no. 1, pp. 2-16 | DOI | MR | Zbl
[4] New nonlinear estimates for surfaces in terms of their fundamental forms, C. R. Acad. Sci. Paris, Volume 355 (2017) no. 2, pp. 226-231 | DOI | MR | Zbl
[5] Recovery of a manifold with boundary and its continuity as a function of its metric tensor, J. Math. Pures Appl., Volume 83 (2004) no. 7, pp. 811-843 | DOI | MR | Zbl
[6] Nonlinear estimates for hypersurfaces in terms of their fundamental forms, C. R. Acad. Sci. Paris, Ser. I, Volume 355 (2017) no. 11, pp. 1196-1200 | DOI | MR | Zbl
[7] Nonlinear Korn inequalities on a hypersurface, Chin. Ann. Math., Volume 39 (2018) no. 3, pp. 513-534 | DOI | MR | Zbl
[8] A nonlinear Korn inequality in with an explicitly bounded constant, C. R., Math., Acad. Sci. Paris, Volume 358 (2020) no. 5, pp. 621-626 | MR | Zbl
[9] Estimates for the constant in two nonlinear Korn inequalities (2021) (in press, to appear in Mathematics and Mechanics of Solids, https://doi.org/10.1177/1081286520957705)
[10] Sobolev Spaces, Springer, 1985 (translated from the Russian by T. O. Shaposhnikova) | Zbl
[11] Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, 1967 | Zbl
[12] Analytic extensions of differentiable functions defined in closed sets, Trans. Am. Math. Soc., Volume 36 (1934) no. 1, pp. 63-89 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy