Comptes Rendus
Complex analysis and geometry
On the Erdős–Lax Inequality
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1081-1085.

The Erdős–Lax Theorem states that if P(z)= ν=1 n a ν z ν is a polynomial of degree n having no zeros in |z|<1, then

max |z|=1 |P (z)|n 2max |z|=1 |P(z)|.

In this paper, we prove a sharpening of the above inequality (1). In order to prove our result we prove a sharpened form of the well-known Theorem of Laguerre on polynomials, which itself could be of independent interest.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.141
Classification: 30A10

Prasanna Kumar 1

1 Department of Mathematics, Birla Institute of Technology and Science Pilani, K K Birla Goa Campus, Goa, India 403726
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G9_1081_0,
     author = {Prasanna Kumar},
     title = {On the {Erd\H{o}s{\textendash}Lax} {Inequality}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1081--1085},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.141},
     language = {en},
}
TY  - JOUR
AU  - Prasanna Kumar
TI  - On the Erdős–Lax Inequality
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1081
EP  - 1085
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.141
LA  - en
ID  - CRMATH_2022__360_G9_1081_0
ER  - 
%0 Journal Article
%A Prasanna Kumar
%T On the Erdős–Lax Inequality
%J Comptes Rendus. Mathématique
%D 2022
%P 1081-1085
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.141
%G en
%F CRMATH_2022__360_G9_1081_0
Prasanna Kumar. On the Erdős–Lax Inequality. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1081-1085. doi : 10.5802/crmath.141. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.141/

[1] Nesmith C. Ankeny; Theodore J. Rivlin On a theorem of S. Bernstein, Pac. J. Math., Volume 5 (1955), pp. 849-852 | DOI | Zbl

[2] Sergeĭ N. Bernshteĭn Leçons sur les propriétés extrémales et la meilleure approximation des fonctions analytiques d’une variable réelle, Collection de monographies sur la théorie des fonctions, Gauthier-Villars, 1926

[3] Pál Erdős On extremal properties of derivatives of polynomials, Ann. Math., Volume 41 (1940), pp. 310-313 | DOI | MR | Zbl

[4] Narenda K. Govil; Qazi I. Rahman Functions of exponential type not vanishing in a halfplane and related polynomials, Trans. Am. Math. Soc., Volume 137 (1969), pp. 501-517 | DOI | Zbl

[5] Edmond Laguerre Oeuvres Vol. 1, Nouv. Ann. Math., Volume 17 (1878) no. 2, pp. 20-25

[6] Peter D. Lax Proof of a conjecture of P. Erdős on the derivative of a polynomial, Bull. Am. Math. Soc., Volume 50 (1944), pp. 509-513 | Zbl

[7] M. A. Malik On the derivative of a polynomial, J. Lond. Math. Soc., Volume 1 (1969), pp. 57-60 | DOI | Zbl

[8] George Pólya; Gábor Szegő Aufgaben und Lehrsätze aus der Analysis, Grundlehren der Mathematischen Wissenschaften, 19, Springer, 1925

[9] Albert C. Schaeffer Inequalities of A. Markoff and S. Bernstein for polynomials and related functions, Bull. Am. Math. Soc., Volume 47 (1941), pp. 565-579 | DOI | MR | Zbl

[10] Gábor Szegő Bemerkungen zu einem Satz von J. H. Grace über die Wurzeln algebraischer Gleichungen, Math. Z., Volume 13 (1922), pp. 28-55 | DOI | Zbl

Cited by Sources:

Comments - Policy