In this paper, we discuss the local properties of quasihyperbolic mappings in metric spaces, which are related to an open problem raised by Huang et al in 2016. Our result is a partial solution to this problem, which is also a generalization of the corresponding result obtained by Huang et al in 2016.
Revised:
Accepted:
Published online:
Qingshan Zhou 1; Yaxiang Li 2; Yuehui He 3

@article{CRMATH_2021__359_3_237_0, author = {Qingshan Zhou and Yaxiang Li and Yuehui He}, title = {Quasihyperbolic mappings in length metric spaces}, journal = {Comptes Rendus. Math\'ematique}, pages = {237--247}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.154}, language = {en}, }
Qingshan Zhou; Yaxiang Li; Yuehui He. Quasihyperbolic mappings in length metric spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 237-247. doi : 10.5802/crmath.154. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.154/
[1] The boundary correspondence under quasiconformal mappings, Acta Math., Volume 96 (1956), pp. 125-142 | DOI | MR | Zbl
[2] Rough quasi-mappings and Gromov hyperbolic spaces (2021) (Submited)
[3] Semisolidity and locally weak quasi-symmetry of homeomorphisms in metric spaces, Stud. Math., Volume 242 (2018) no. 3, pp. 267-301 | DOI | Zbl
[4] Local properties of quasi-hyperbolic mappings in metric spaces, Ann. Acad. Sci. Fenn., Math., Volume 41 (2016) no. 1, pp. 23-40 | DOI | Zbl
[5] Functional analysis, International Series in Pure and Applied Mathematics, McGraw-Hill, 1991 | Zbl
[6] On the geometry of metric measure spaces. I., Acta Math., Volume 196 (2006) no. 1, pp. 65-131 | DOI | MR | Zbl
[7] Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn., Math., Volume 5 (1980), pp. 97-114 | DOI | MR | Zbl
[8] Lipschitz and quasiconformal approximation and extension, Ann. Acad. Sci. Fenn., Math., Volume 6 (1981), pp. 303-342 | DOI | MR | Zbl
[9] Free quasiconformality in Banach spaces. I, Ann. Acad. Sci. Fenn., Math., Volume 15 (1990) no. 2, pp. 355-379 | DOI | MR | Zbl
[10] The free quasiworld, freely quasiconformal and related maps in Banach spaces, Quasiconformal geometry and dynamics (Lublin, 1996) (Banach Center Publications), Volume 48, Polish Academy of Sciences, Institute of Mathematics, 1999, pp. 55-118 | MR | Zbl
Cited by Sources:
Comments - Policy