Comptes Rendus
Differential geometry
Algebraic intersection for translation surfaces in the stratum (2)
Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 65-70.

We study a volume related quantity KVol on the stratum (2) of translation surfaces of genus 2, with one conical point. We provide an explicit sequence L(n,n) of surfaces such that KVol(L(n,n))2 when n goes to infinity, 2 being the conjectured infimum for KVol over (2).

Nous étudions une quantité KVol liée au volume sur la strate (2) des surfaces de translation de genre 2, avec une singularité conique. Nous donnons une suite explicite de surfaces L(n,n) telles que KVol(L(n,n))2 quand n tend vers l’infini, 2 étant l’infimum conjectural de KVol sur (2).

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.153

Smail Cheboui 1, 2; Arezki Kessi 2; Daniel Massart 1

1 IMAG, Univ Montpellier, CNRS, Montpellier, France
2 USTHB, Faculté de Mathématiques, Laboratoire de Systèmes Dynamiques, 16111 El-Alia BabEzzouar, Alger, Algérie
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_1_65_0,
     author = {Smail Cheboui and Arezki Kessi and Daniel Massart},
     title = {Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {65--70},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.153},
     language = {en},
}
TY  - JOUR
AU  - Smail Cheboui
AU  - Arezki Kessi
AU  - Daniel Massart
TI  - Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 65
EP  - 70
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.153
LA  - en
ID  - CRMATH_2021__359_1_65_0
ER  - 
%0 Journal Article
%A Smail Cheboui
%A Arezki Kessi
%A Daniel Massart
%T Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$
%J Comptes Rendus. Mathématique
%D 2021
%P 65-70
%V 359
%N 1
%I Académie des sciences, Paris
%R 10.5802/crmath.153
%G en
%F CRMATH_2021__359_1_65_0
Smail Cheboui; Arezki Kessi; Daniel Massart. Algebraic intersection for translation surfaces in the stratum ${\protect \mathcal{H}(2)}$. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 65-70. doi : 10.5802/crmath.153. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.153/

[1] Smaïl Cheboui; Arezki Kessi; Daniel Massart Algebraic intersection for translation surfaces in the Teichmüller disk of L(2,2) (https://arxiv.org/abs/2007.10847)

[2] Frank Herrlich; Bjoern Muetzel; Gabriela Weitze-Schmithüsen Systolic geometry of translation surfaces (2018) (https://arxiv.org/abs/1809.10327v1)

[3] Pascal Hubert; Samuel Lelièvre Prime arithmetic Teichmüller discs in (2), Isr. J. Math., Volume 151 (2006), pp. 281-321 | DOI | Zbl

[4] Chris Judge; Hugo Parlier The maximum number of systoles for genus two Riemann surfaces with abelian differentials, Comment. Math. Helv., Volume 94 (2019) no. 2, pp. 399-437 | DOI | MR | Zbl

[5] Daniel Massart; Bjoern Muetzel On the intersection form of surfaces, Manuscr. Math., Volume 143 (2014) no. 1-2, pp. 19-49 | DOI | MR | Zbl

[6] Curtis T. McMullen Teichmüller curves in genus two: discriminant and spin, Math. Ann., Volume 333 (2005) no. 1, pp. 87-130 | DOI | Zbl

[7] Gabriela Schmithüsen An algorithm for finding the Veech group of an origami, Exp. Math., Volume 13 (2004) no. 4, pp. 459-472 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy