Property FW is a natural combinatorial weakening of Kazhdan’s Property T. We prove that the group of piecewise homographic self-transformations of the real projective line, has “few” infinite subgroups with Property FW. In particular, no such subgroup is amenable or has Kazhdan’s Property T. These results are extracted from a longer paper. We provide a complete proof, whose main tools are the use of the notion of partial action and of one-dimensional geometric structures.
Revised:
Accepted:
Published online:
Yves Cornulier 1
@article{CRMATH_2021__359_1_71_0, author = {Yves Cornulier}, title = {Property {FW} and 1-dimensional piecewise groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {71--78}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {1}, year = {2021}, doi = {10.5802/crmath.155}, language = {en}, }
Yves Cornulier. Property FW and 1-dimensional piecewise groups. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 71-78. doi : 10.5802/crmath.155. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.155/
[1] Sobre ações parciais, fibrados de Fell e grupóides, Ph. D. Thesis, University of São Paulo, Brazil (1999)
[2] Enveloping actions and Takai duality for partial actions, J. Funct. Anal., Volume 197 (2003) no. 1, pp. 14-67 | DOI | MR | Zbl
[3] Kazhdan’s Property (T), New Mathematical Monographs, 11, Cambridge University Press, 2008 | MR | Zbl
[4] Die Projektivitätengruppe der Moulton–Ebenen, J. Geom., Volume 13 (1979) no. 2, pp. 197-209 | DOI | MR | Zbl
[5] Eine stückweise projektive topologische Gruppe im Zusammenhang mit den Moulton–Ebenen, Arch. Math., Volume 38 (1982) no. 3, pp. 280-285 | DOI | Zbl
[6] Relations d’équivalence moyennables sur les groupes de Lie, C. R. Math. Acad. Sci. Paris, Volume 300 (1985) no. 19, pp. 677-680 | Zbl
[7] Irreducible lattices, invariant means, and commensurating actions, Math. Z., Volume 279 (2015) no. 1-2, pp. 1-26 | DOI | MR | Zbl
[8] Group actions with commensurated subsets, wallings and cubings (2016) (https://arxiv.org/abs/1302.5982)
[9] Commensurating actions for groups of piecewise continuous transformations (2018) (https://arxiv.org/abs/1803.08572)
[10] Regularization of birational actions of FW groups (2019) (https://arxiv.org/abs/1910.07802 to appear in Confluentes Mathematici)
[11] Free groups of interval exchange transformations are rare, Groups Geom. Dyn., Volume 7 (2013) no. 4, pp. 883-910 | DOI | MR | Zbl
[12] Property (T) for noncommutative universal lattices, Invent. Math., Volume 179 (2010) no. 2, pp. 303-347 | DOI | MR | Zbl
[13] Partial actions of groups and actions of inverse semigroups, Proc. Am. Math. Soc., Volume 126 (1998) no. 12, pp. 3481-3494 | DOI | MR | Zbl
[14] Distances hilbertiennes invariantes sur un espace homogène, Ann. Inst. Fourier, Volume 24 (1974) no. 3, pp. 171-217 | DOI | Numdam | Zbl
[15] Pseudogroups of piecewise projective homeomorphisms, Pac. J. Math., Volume 129 (1987) no. 1, pp. 67-75 | DOI | MR | Zbl
[16] On property (T) for and (2018) (https://arxiv.org/abs/1812.03456, to appear in Annals of Mathematics)
[17] has property (T), Math. Ann., Volume 375 (2019) no. 3-4, pp. 1169-1191 | MR | Zbl
[18] Partial actions of groups, Int. J. Algebra Comput., Volume 14 (2004) no. 1, pp. 87-114 | DOI | MR | Zbl
[19] Sur les surfaces localement affines., Géométrie différentielle (Colloques Internationaux du Centre National de la Recherche Scientifique), Volume 1953, CNRS Editions, 1953, pp. 79-87 | Zbl
[20] Locally projective spaces of dimension one, Mich. Math. J., Volume 2 (1954), pp. 95-97 | MR | Zbl
[21] Property FW, differentiable structures, and smoothability of singular actions, J. Topol., Volume 13 (2020) no. 3, pp. 1119-1138 | DOI | MR | Zbl
[22] A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn., Volume 10 (2016) no. 1, pp. 177-200 | DOI | MR | Zbl
[23] Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA, Volume 110 (2013) no. 12, pp. 4524-4527 | DOI | MR | Zbl
[25] Groups covered by finitely many cosets, Publ. Math., Volume 3 (1954), pp. 227-242 | MR | Zbl
[26] Kazhdan groups with infinite outer automorphism group, Trans. Am. Math. Soc., Volume 359 (2007) no. 5, pp. 1959-1976 | DOI | MR | Zbl
[27] A global formulation of the Lie theory of transformation groups, Memoirs of the American Mathematical Society, 22, American Mathematical Society, 1957 | MR | Zbl
[28] A course in model theory. An introduction to contemporary mathematical logic, Universitext, Springer, 2000 (translated from the French by Moses Klein) | Zbl
[29] Crofton formulae and geodesic distance in hyperbolic spaces, J. Lie Theory, Volume 8 (1998) no. 1, pp. 163-172 | MR | Zbl
[30] Negative definite kernels and a dynamical characterization of property (T) for countable groups, Ergodic Theory Dyn. Syst., Volume 18 (1998) no. 1, pp. 247-253 | DOI | MR | Zbl
[31] Der von Staudtsche Standpunkt in lokal kompakten Geometrien, Math. Z., Volume 155 (1977) no. 1, pp. 11-21 | DOI | MR | Zbl
[32] La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres, C. R. Math. Acad. Sci. Paris, Volume 323 (1996) no. 5, pp. 453-458 | MR | Zbl
Cited by Sources:
Comments - Policy