[Formule homotopique de Cartan et le complexe de Hochschild bivariant]
La formule
The formula
Accepté le :
Publié le :
Abhishek Banerjee 1
@article{CRMATH_2009__347_17-18_997_0, author = {Abhishek Banerjee}, title = {Cartan homotopy formulae and the bivariant {Hochschild} complex}, journal = {Comptes Rendus. Math\'ematique}, pages = {997--1000}, publisher = {Elsevier}, volume = {347}, number = {17-18}, year = {2009}, doi = {10.1016/j.crma.2009.07.016}, language = {en}, }
Abhishek Banerjee. Cartan homotopy formulae and the bivariant Hochschild complex. Comptes Rendus. Mathématique, Volume 347 (2009) no. 17-18, pp. 997-1000. doi : 10.1016/j.crma.2009.07.016. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.1016/j.crma.2009.07.016/
[1] Cohomologie cyclique et foncteurs
[2] Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math., Volume 62 (1985), pp. 257-360
[3] Cyclic homology, derivations, and the free loopspace, Topology, Volume 24 (1985) no. 2, pp. 187-215
[4] Bivariant cyclic theory, K-Theory, Volume 3 (1989) no. 4, pp. 339-365
[5] Cyclic Homology, Grundlehren der Mathematischen Wissenschaften, vol. 301, Springer-Verlag, Berlin, 1998
[6] Differential forms on general commutative algebras, Trans. Amer. Math. Soc., Volume 108 (1963), pp. 195-222
[7] Homology of matrix Lie algebras over rings and the Hochschild homology, Russian Math. Surveys, Volume 38 (1983) no. 2, pp. 198-199
Cité par Sources :
Commentaires - Politique