logo CRAS
Comptes Rendus. Mathématique
Partial differential equations
Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations
Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 85-98.

In a recent article by Gravejat and Smets [7], it is built smooth solutions to the inviscid surface quasi-geostrophic equation that have the form of a traveling wave. In this article we work back on their construction to provide similar solutions to a more general class of quasi-geostrophic equation where the half-laplacian is replaced by any fractional laplacian.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.159
Ludovic Godard-Cadillac 1

1 Sorbonne Université, Laboratoire Jacques-Louis Lions, 4, Place Jussieu, 75005 Paris, France
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_1_85_0,
     author = {Ludovic Godard-Cadillac},
     title = {Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {85--98},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {1},
     year = {2021},
     doi = {10.5802/crmath.159},
     language = {en},
}
TY  - JOUR
TI  - Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 85
EP  - 98
VL  - 359
IS  - 1
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.159
DO  - 10.5802/crmath.159
LA  - en
ID  - CRMATH_2021__359_1_85_0
ER  - 
%0 Journal Article
%T Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations
%J Comptes Rendus. Mathématique
%D 2021
%P 85-98
%V 359
%N 1
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.159
%R 10.5802/crmath.159
%G en
%F CRMATH_2021__359_1_85_0
Ludovic Godard-Cadillac. Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations. Comptes Rendus. Mathématique, Volume 359 (2021) no. 1, pp. 85-98. doi : 10.5802/crmath.159. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.159/

[1] Vladimir I. Arnold Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer, 1978 | MR | Zbl

[2] Luis Caffarelli; Luis Silvestre An extension problem related to the fractional laplacian, Commun. Partial Differ. Equations, Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | MR | Zbl

[3] Angel Castro; Diego Córdoba; Javier Gómez-Serrano Global smooth solutions for the inviscid SQG equation (2016) (https://arxiv.org/abs/1603.03325) | Zbl

[4] Peter Constantin; Andrew J. Majda; Esteban Tabak Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar, Nonlinearity, Volume 7 (1994) no. 6, pp. 1495-1533 | DOI | MR | Zbl

[5] Eleonora Di Nezza; Giampiero Palatucci; Enrico Valdinoci Hitchhiker’s guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012) no. 5, pp. 521-573 | DOI | MR | Zbl

[6] Ludovic Godard-Cadillac Les vortex quasi-géostrophiques et leur désingularisation (2020) (Ph. D. Thesis)

[7] Philippe Gravejat; Didier Smets Smooth travelling-wave solutions to the inviscid surface quasi-geostrophic equation, Int. Math. Res. Not., Volume 2019 (2019) no. 6, pp. 1744-1757 | DOI | MR | Zbl

[8] Richard Palais The principle of symmetric criticality, Commun. Math. Phys., Volume 69 (1979) no. 1, pp. 19-30 | DOI | MR | Zbl

[9] Joseph Pedlowsky Geophysical Fluid Dynamics, Springer, 1987

[10] Didier Smets; Michel Willem Partial symmetry and asymptotic behavior for some elliptic variational problems, Calc. Var. Partial Differ. Equ., Volume 18 (2003) no. 1, pp. 57-75 | DOI | MR | Zbl

[11] Elias M. Stein Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, 1993 | MR | Zbl

[12] Geoffrey K. Vallis Atmospheric and Oceanic Fluid Dynamics, Cambridge University Press, 2006 | Zbl

Cited by Sources: