Comptes Rendus
Equations aux dérivées partielles, Systèmes dynamiques
Hölder estimate for the 3 point-vortex problem with alpha-models
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 355-362.

In this article we study quasi-geostrophic point-vortex systems in a general setting called alpha point-vortex. We study a particular case of vortex collapses called mono-scale collapses and this study gives the Hölder regularity for the 3-vortex problem. This result implies in particular that the trajectories of the vortices are convergent even in the case of a collapse.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.414

Ludovic Godard-Cadillac 1

1 Laboratoire Jean Leray, Nantes Université, 2 Chem. de la Houssinière, 44322 Nantes, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_355_0,
     author = {Ludovic Godard-Cadillac},
     title = {H\"older estimate for the 3 point-vortex problem with alpha-models},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {355--362},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.414},
     language = {en},
}
TY  - JOUR
AU  - Ludovic Godard-Cadillac
TI  - Hölder estimate for the 3 point-vortex problem with alpha-models
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 355
EP  - 362
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.414
LA  - en
ID  - CRMATH_2023__361_G1_355_0
ER  - 
%0 Journal Article
%A Ludovic Godard-Cadillac
%T Hölder estimate for the 3 point-vortex problem with alpha-models
%J Comptes Rendus. Mathématique
%D 2023
%P 355-362
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.414
%G en
%F CRMATH_2023__361_G1_355_0
Ludovic Godard-Cadillac. Hölder estimate for the 3 point-vortex problem with alpha-models. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 355-362. doi : 10.5802/crmath.414. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.414/

[1] Hassan Aref Motion of three vortices, Phys. Fluids, Volume 22 (1979) no. 3, pp. 393-400 | DOI | Zbl

[2] Hassan Aref Self-similar motion of three point vortices, Phys. Fluids, Volume 22 (2010) no. 5, 057104 | Zbl

[3] Vladimir I. Arnold Mathematical methods of classical mechanics, Graduate Texts in Mathematics, 60, Springer, 1978 | Numdam | Zbl

[4] Gualtiero Badin; Anna M. Barry Collapse of generalized Euler and surface quasi-geostrophic point-vortices, Phys. Rev. E, Volume 98 (2018) no. 2, 023110 | DOI

[5] Martin Donati Two-Dimensional Point Vortex Dynamics in Bounded Domains: Global Existence for Almost Every Initial Data, SIAM J. Math. Anal., Volume 54 (2022) no. 1, pp. 79-113 | DOI | MR | Zbl

[6] Martin Donati; Ludovic Godard-Cadillac Hölder regularity for collapses of point vortices (2022) (https://arxiv.org/abs/2111.14230)

[7] Carina Geldhauser; Marco Romito Point vortices for inviscid generalized surface quasi-geostrophic models, Discrete Contin. Dyn. Syst., Ser. B, Volume 25 (2020) no. 7, pp. 2583-2606 | MR | Zbl

[8] Ludovic Godard-Cadillac Quasi-geostrophic vortices and their desingularization, Ph. D. Thesis, Sorbonne Université, Paris, France (2020) (in french)

[9] Ludovic Godard-Cadillac Vortex collapses for the Euler and Quasi-Geostrophic models, Discrete Contin. Dyn. Syst., Volume 42 (2022) no. 7, pp. 3143-3168 | DOI | MR | Zbl

[10] Walter Gröbli Spezielle Probleme über die Bewegung Geradlinier Paralleler Wirbelfäden, Druck von Zürcher und Furrer (1877) | Zbl

[11] Francesco Grotto; Umberto Pappalettera Burst of Point-Vortices and non-uniqueness of 2D Euler equations (2020) (https://arxiv.org/abs/2011.13329)

[12] Hermann von Helmholtz Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen, J. Reine Angew. Math., Volume 55 (1858), pp. 25-55 | DOI

[13] Vikas S. Krishnamurthy; Mark A. Stremler Finite-time Collapse of Three Point Vortices in the Plane, Regul. Chaotic Dyn., Volume 23 (2018) no. 5, pp. 530-550 | DOI | MR | Zbl

[14] Carlo Marchioro; Mario Pulvirenti Vortex methods in two-dimensionnal fluid mechanics, Lecture Notes in Physics, 203, Springer, 1984 | Zbl

[15] Carlo Marchioro; Mario Pulvirenti Mathematical theory of incompressible nonviscous fluids, Applied Mathematical Sciences, 96, Springer, 1994 | DOI | Zbl

[16] Paul K. Newton The N-vortex problem, analytical techniques, Applied Mathematical Sciences, 145, Springer, 2001 | DOI | Zbl

[17] E. A. Novikov Dynamics and statistics of a system of vortices, Zh. Eksp. Teor. Fiz., Volume 41 (1975) no. 5, pp. 937-943

[18] Jean N. Reinaud Self-similar collapse of three geophysical vortices, Geophys. Astrophys. Fluid Dyn., Volume 115 (2021) no. 4, pp. 369-392 | DOI | MR | Zbl

[19] Jean N. Reinaud; David G. Dritschel; Richard K. Scott Self-similar collapse of three vortices in the generalised Euler and quasi-geostrophic equations, Physica D, Volume 434 (2022), 133226 | MR | Zbl

Cité par Sources :

Commentaires - Politique