logo CRAS
Comptes Rendus. Mathématique
Géométrie algébrique
The equivariant Atiyah class
Comptes Rendus. Mathématique, Tome 359 (2021) no. 3, pp. 257-282.

Soit X un schéma complexe sur lequel agit un groupe algébrique affine G. Nous démontrons que la classe d’Atiyah d’un complexe parfait G-équivariant au dessus de X, construite par Huybrechts et Thomas, est G-équivariante dans un sense précis. Comme application, nous démontrons que, si G est réductif, la théorie d’obstruction sur l’espace de modules relatif fin MB des complexes parfaits simples sur une famille lisse projective YB est G-équivariante. Les résultats contenus ici vont suggérer comment vérifier l’équivariance de la théorie d’obstruction naturelle sur un nombre d’espaces de modules munis de l’action d’un tore, notamment ceux qui sont construits en théorie de Donaldson–Thomas et en théorie de Vafa–Witten.

Let X be a complex scheme acted on by an affine algebraic group G. We prove that the Atiyah class of a G-equivariant perfect complex on X, as constructed by Huybrechts and Thomas, is G-equivariant in a precise sense. As an application, we show that, if G is reductive, the obstruction theory on the fine relative moduli space MB of simple perfect complexes on a G-invariant smooth projective family YB is G-equivariant. The results contained here are meant to suggest how to check the equivariance of the natural obstruction theories on a wide variety of moduli spaces equipped with a torus action, arising for instance in Donaldson–Thomas theory and Vafa–Witten theory.

Reçu le :
Accepté le :
Accepté après révision le :
Publié le :
DOI : https://doi.org/10.5802/crmath.166
Classification : 14F05,  14D20,  14N10
Andrea T. Ricolfi 1

1. Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, 34136 Trieste, Italy
@article{CRMATH_2021__359_3_257_0,
     author = {Andrea T. Ricolfi},
     title = {The equivariant {Atiyah} class},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {257--282},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {3},
     year = {2021},
     doi = {10.5802/crmath.166},
     language = {en},
}
TY  - JOUR
AU  - Andrea T. Ricolfi
TI  - The equivariant Atiyah class
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 257
EP  - 282
VL  - 359
IS  - 3
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.166
DO  - 10.5802/crmath.166
LA  - en
ID  - CRMATH_2021__359_3_257_0
ER  - 
%0 Journal Article
%A Andrea T. Ricolfi
%T The equivariant Atiyah class
%J Comptes Rendus. Mathématique
%D 2021
%P 257-282
%V 359
%N 3
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.166
%R 10.5802/crmath.166
%G en
%F CRMATH_2021__359_3_257_0
Andrea T. Ricolfi. The equivariant Atiyah class. Comptes Rendus. Mathématique, Tome 359 (2021) no. 3, pp. 257-282. doi : 10.5802/crmath.166. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.166/

[1] Michael Francis Atiyah Complex analytic connections in fibre bundles, Trans. Am. Math. Soc., Volume 85 (1957), pp. 181-207 | Article | MR 86359 | Zbl 0078.16002

[2] Matthew Ballard; David Favero; Ludmil Katzarkov Variation of geometric invariant theory quotients and derived categories, J. Reine Angew. Math., Volume 746 (2019), pp. 235-303 | Article | MR 3895631 | Zbl 1432.14015

[3] Sjoerd Beentjes; Andrea T. Ricolfi Virtual counts on Quot schemes and the higher rank local DT/PT correspondence (2018) (to appear in Math. Res. Lett.)

[4] Kai Behrend; Barbara Fantechi The intrinsic normal cone, Invent. Math., Volume 128 (1997) no. 1, pp. 45-88 | Article | MR 1437495 | Zbl 0909.14006

[5] Kai Behrend; Barbara Fantechi Symmetric obstruction theories and Hilbert schemes of points on threefolds, Algebra Number Theory, Volume 2 (2008), pp. 313-345 | Article | MR 2407118 | Zbl 1170.14004

[6] Joseph Bernstein; Valery Lunts Equivariant sheaves and functors, Lecture Notes in Mathematics, 1578, Springer, 1994, iv+139 pages | Article | MR 1299527 | Zbl 0808.14038

[7] Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6. Théorie des intersections et théorème de Riemann-Roch. (Pierre Berthelot; Alexander Grothendieck; Luc Illusie, eds.), Lecture Notes in Mathematics, 225, Springer, 1971 | Zbl 0218.14001

[8] Alberto Cazzaniga; Dimbinaina Ralaivaosaona; Andrea T. Ricolfi Higher rank motivic Donaldson–Thomas invariants of 𝔸 3 via wall-crossing, and asymptotics (2020) (https://arxiv.org/abs/2004.07020)

[9] Ben Davison; Andrea T. Ricolfi The local motivic DT/PT correspondence (2019) (https://arxiv.org/abs/1905.12458)

[10] Igor Dolgachev Lectures on invariant theory, London Mathematical Society Lecture Note Series, 296, Cambridge University Press, 2003, xvi+220 pages | Article | MR 2004511 | Zbl 1023.13006

[11] Barbara Fantechi; Lothar Göttsche Riemann-Roch theorems and elliptic genus for virtually smooth schemes, Geom. Topol., Volume 14 (2010) no. 1, pp. 83-115 | Article | MR 2578301 | Zbl 1194.14017

[12] Nadir Fasola; Sergej Monavari; Andrea T. Ricolfi Higher rank K-theoretic Donaldson–Thomas theory of points, Forum Math. Sigma, Volume 9 (2021), e15 | Article | MR 4228267 | Zbl 07319051

[13] Letterio Gatto; Andrea T. Ricolfi Jet bundles on Gorenstein curves and applications, J. Singul., Volume 21 (2020), pp. 50-83 | MR 4084200 | Zbl 07199620

[14] Amin Gholampour; Martijn Kool; Benjamin Young Rank 2 Sheaves on Toric 3-Folds: Classical and Virtual Counts, Int. Math. Res. Not., Volume 2018 (2018) no. 10, pp. 2981-3069 | Article | MR 3805195 | Zbl 1439.14125

[15] Tom Graber; Rahul Pandharipande Localization of virtual classes, Invent. Math., Volume 135 (1999) no. 2, pp. 487-518 | Article | MR 1666787 | Zbl 0953.14035

[16] Alexander Grothendieck Éléments de géométrie algébrique. I. Le langage des schémas, Publ. Math., Inst. Hautes Étud. Sci. (1960) no. 4, p. 228 | Numdam | MR 0217083 | Zbl 0118.36206

[17] Jack Hall; Amnon Neeman; David Rydh One positive and two negative results for derived categories of algebraic stacks, J. Inst. Math. Jussieu, Volume 18 (2019) no. 5, pp. 1087-1111 | Article | MR 3995721 | Zbl 1440.14083

[18] Jack Hall; David Rydh Algebraic groups and compact generation of their derived categories of representations, Indiana Univ. Math. J., Volume 64 (2015) no. 6, pp. 1903-1923 | Article | MR 3436239 | Zbl 1348.14045

[19] Jack Hall; David Rydh Perfect complexes on algebraic stacks, Compos. Math., Volume 153 (2017) no. 11, pp. 2318-2367 | Article | MR 3705292 | Zbl 1390.14057

[20] Robin Hartshorne Algebraic geometry, Graduate Texts in Mathematics, 52, Springer, 1977, xvi+496 pages | Zbl 0367.14001

[21] Daniel Huybrechts; Manfred Lehn The geometry of moduli spaces of sheaves, Cambridge Mathematical Library, Cambridge University Press, 2010, xviii+325 pages | Article | Zbl 1206.14027

[22] Daniel Huybrechts; Richard P. Thomas Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes, Math. Ann., Volume 346 (2010) no. 3, pp. 545-569 | Article | MR 2578562 | Zbl 1186.14014

[23] Daniel Huybrechts; Richard P. Thomas Erratum to: Deformation-obstruction theory for complexes via Atiyah and Kodaira-Spencer classes [MR2578562], Math. Ann., Volume 358 (2014) no. 1-2, pp. 561-563 | Article | Zbl 1283.14007

[24] Luc Illusie Complexe cotangent et déformations. I, Lecture Notes in Mathematics, 239, Springer, 1971, xv+355 pages | MR 0491680 | Zbl 0224.13014

[25] Luc Illusie Complexe cotangent et déformations. II, Lecture Notes in Mathematics, 283, Springer, 1972, vii+304 pages | MR 0491681 | Zbl 0238.13017

[26] Srikanth B. Iyengar; Joseph Lipman; Amnon Neeman Relation between two twisted inverse image pseudofunctors in duality theory, Compos. Math., Volume 151 (2015) no. 4, pp. 735-764 | Article | MR 3334894 | Zbl 1348.13022

[27] Martijn Kool Fixed point loci of moduli spaces of sheaves on toric varieties, Adv. Math., Volume 227 (2011) no. 4, pp. 1700-1755 | Article | MR 2799810 | Zbl 1227.14018

[28] Gérard Laumon; Laurent Moret-Bailly Champs algébriques, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 39, Springer, 2000, xii+208 pages | Zbl 0945.14005

[29] Jun Li; Gang Tian Virtual moduli cycles and Gromov-Witten invariants of algebraic varieties, J. Am. Math. Soc., Volume 11 (1998) no. 1, pp. 119-174 | Article | MR 1467172 | Zbl 0912.14004

[30] Joseph Lipman Notes on derived functors and Grothendieck duality, Foundations of Grothendieck duality for diagrams of schemes (Lecture Notes in Mathematics), Volume 1960, Springer, 2009, pp. 1-259 | Article | MR 2490557

[31] David Mumford; John Fogarty; Frances C. Kirwan Geometric invariant theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 34, Springer, 1994, xiv+292 pages | Article | MR 1304906

[32] Amnon Neeman The Grothendieck duality theorem via Bousfield’s techniques and Brown representability, J. Am. Math. Soc., Volume 9 (1996) no. 1, pp. 205-236 | Article | MR 1308405 | Zbl 0864.14008

[33] Amnon Neeman An improvement of the base-change theorem and the functor f ! (2017) (https://arxiv.org/abs/1406.7599)

[34] Martin Olsson Sheaves on Artin stacks, J. Reine Angew. Math., Volume 603 (2007), pp. 55-112 | Article | MR 2312554 | Zbl 1137.14004

[35] Martin Olsson Algebraic spaces and stacks, Colloquium Publications, 62, American Mathematical Society, 2016, xi+298 pages | Article | MR 3495343 | Zbl 1346.14001

[36] Dragos Oprea; Rahul Pandharipande Quot schemes of curves and surfaces: virtual classes, integrals, Euler characteristics, 2019 (https://arxiv.org/abs/1903.08787)

[37] Andrea T. Ricolfi The DT/PT correspondence for smooth curves, Math. Z., Volume 290 (2018) no. 1-2, pp. 699-710 | Article | MR 3848452 | Zbl 1409.14093

[38] Andrea T. Ricolfi Local contributions to Donaldson–Thomas invariants, Int. Math. Res. Not., Volume 2018 (2018) no. 19, pp. 5995-6025 | Article | MR 3867400 | Zbl 1423.14325

[39] Andrea T. Ricolfi On the motive of the Quot scheme of finite quotients of a locally free sheaf, J. Math. Pures Appl, Volume 144 (2020), pp. 50-68 | Article | MR 4175444 | Zbl 1451.14009

[40] Andrea T. Ricolfi Virtual classes and virtual motives of Quot schemes on threefolds, Adv. Math., Volume 369 (2020), p. 107182 | Article | MR 4093610 | Zbl 1442.14176

[41] Maxwell Rosenlicht Toroidal algebraic groups, Proc. Am. Math. Soc., Volume 12 (1961), pp. 984-988 | Article | MR 133328 | Zbl 0107.14703

[42] Christian Serpé Resolution of unbounded complexes in Grothendieck categories, J. Pure Appl. Algebra, Volume 177 (2003) no. 1, pp. 103-112 | Article | MR 1948842 | Zbl 1033.18007

[43] Nicolas Spaltenstein Resolutions of unbounded complexes, Compos. Math., Volume 65 (1988) no. 2, pp. 121-154 | Numdam | MR 932640 | Zbl 0636.18006

[44] The Stacks Project Authors Stacks Project, 2016 (http://stacks.math.columbia.edu)

[45] Hideyasu Sumihiro Equivariant completion II, J. Math. Kyoto Univ., Volume 15 (1975) no. 3, pp. 573-605 | Article | MR 387294 | Zbl 0331.14008

[46] Robert W. Thomason Equivariant resolution, linearization, and Hilbert’s fourteenth problem over arbitrary base schemes, Adv. Math., Volume 65 (1987) no. 1, pp. 16-34 | Article | MR 893468 | Zbl 0624.14025

[47] Robert W. Thomason; Thomas Trobaugh Higher algebraic K-theory of schemes and of derived categories, The Grothendieck Festschrift, Vol. III (Progress in Mathematics), Volume 88, Birkhäuser, 1990, pp. 247-435 | Article | MR 1106918

[48] Burt Totaro The resolution property for schemes and stacks, J. Reine Angew. Math., Volume 577 (2004), pp. 1-22 | Article | MR 2108211 | Zbl 1077.14004

[49] Michela Varagnolo; Eric Vasserot Double affine Hecke algebras and affine flag manifolds, I, Affine Flag Manifolds and Principal Bundles (2010), pp. 233-289 | Article | Zbl 1242.20007

Cité par Sources :