The analysis of Cartesian Perfectly Matched Layers (PMLs) in the context of time-domain electromagnetic wave propagation in a 3D unbounded anisotropic homogeneous medium modelled by a diagonal dielectric tensor is presented. Contrary to the 3D scalar wave equation or 2D Maxwell’s equations some diagonal anisotropies lead to the existence of backward waves giving rise to instabilities of the PMLs. Numerical experiments confirm the presented result.
Dans cette note nous nous intéressons à l’analyse de stabilité de la méthode de couches absorbantes parfaitement adaptées (PMLs) pour la propagation d’ondes électromagnétiques en régime transitoire dans un milieu anisotrope décrit par un tenseur diélectrique diagonal. Contrairement aux cas de l’équation d’ondes scalaire 3D et des équations de Maxwell 2D, certaines anisotropies diagonales mènent à l’existence d’ondes inverses qui provoquent des instabilités de la méthode PML. Ce résultat est illustré par des simulations numériques.
Revised:
Accepted:
Published online:
Éliane Bécache 1; Sonia Fliss 1; Maryna Kachanovska 1; Maria Kazakova 2
@article{CRMATH_2021__359_3_249_0, author = {\'Eliane B\'ecache and Sonia Fliss and Maryna Kachanovska and Maria Kazakova}, title = {On a surprising instability result of {Perfectly} {Matched} {Layers} for {Maxwell{\textquoteright}s} equations in {3D} media with diagonal anisotropy}, journal = {Comptes Rendus. Math\'ematique}, pages = {249--256}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {3}, year = {2021}, doi = {10.5802/crmath.165}, language = {en}, }
TY - JOUR AU - Éliane Bécache AU - Sonia Fliss AU - Maryna Kachanovska AU - Maria Kazakova TI - On a surprising instability result of Perfectly Matched Layers for Maxwell’s equations in 3D media with diagonal anisotropy JO - Comptes Rendus. Mathématique PY - 2021 SP - 249 EP - 256 VL - 359 IS - 3 PB - Académie des sciences, Paris DO - 10.5802/crmath.165 LA - en ID - CRMATH_2021__359_3_249_0 ER -
%0 Journal Article %A Éliane Bécache %A Sonia Fliss %A Maryna Kachanovska %A Maria Kazakova %T On a surprising instability result of Perfectly Matched Layers for Maxwell’s equations in 3D media with diagonal anisotropy %J Comptes Rendus. Mathématique %D 2021 %P 249-256 %V 359 %N 3 %I Académie des sciences, Paris %R 10.5802/crmath.165 %G en %F CRMATH_2021__359_3_249_0
Éliane Bécache; Sonia Fliss; Maryna Kachanovska; Maria Kazakova. On a surprising instability result of Perfectly Matched Layers for Maxwell’s equations in 3D media with diagonal anisotropy. Comptes Rendus. Mathématique, Volume 359 (2021) no. 3, pp. 249-256. doi : 10.5802/crmath.165. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.165/
[1] Perfectly matched layers for hyperbolic systems: general formulation, well-posedness, and stability, SIAM J. Appl. Math., Volume 67 (2006) no. 1, pp. 1-23 | DOI | MR | Zbl
[2] Stability of perfectly matched layers, group velocities and anisotropic waves, J. Comput. Phys., Volume 188 (2003) no. 2, pp. 399-433 | DOI | MR | Zbl
[3] Stable perfectly matched layers for a cold plasma in a strong background magnetic field, J. Comput. Phys., Volume 341 (2017), pp. 76-101 | DOI | MR | Zbl
[4] On the analysis of perfectly matched layers for a class of dispersive media and application to negative index metamaterials, Math. Comp., Volume 87 (2018) no. 314, pp. 2775-2810 | DOI | MR | Zbl
[5] Stability and Convergence Analysis of Time-domain Perfectly Matched Layers for The Wave Equation in Waveguides (2020) (submitted, https://hal.archives-ouvertes.fr/hal-02536375) | Zbl
[6] A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 114 (1994) no. 2, pp. 185-200 | DOI | MR | Zbl
[7] Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys., Volume 127 (1996) no. 2, pp. 363-379 | DOI | MR | Zbl
[8] Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, Cambridge University Press, 1999 | DOI | Zbl
[9] Perfectly matched transmission problem with absorbing layers : application to anisotropic acoustics in convex polygonal domains, Int. J. Numer. Meth. Engng., Volume 96 (2013) no. 11, pp. 689-711 | DOI | MR | Zbl
[10] A time domain analysis of PML models in acoustics, Comput. Methods Appl. Mech. Eng., Volume 195 (2006) no. 29-32, pp. 3820-3853 | DOI | MR | Zbl
[11] A stable, perfectly matched layer for linearized Euler equations in unsplit physical variables, J. Comput. Phys., Volume 173 (2001) no. 2, pp. 455-480 | DOI | MR | Zbl
[12] Initial-boundary value problems and the Navier–Stokes equations, 47, Society for Industrial and Applied Mathematics, 1989 | DOI | Zbl
Cited by Sources:
Comments - Policy