Let be a number field. Given a polynomial of degree , it is conjectured that the number of preperiodic points of is bounded by a uniform bound that depends only on and . However, the only examples of parametric families of polynomials with no preperiodic points are known when is divisible by either or and . In this article, given any integer , we display infinitely many parametric families of polynomials of the form , , with no rational preperiodic points for any .
Soit un corps de nombres. Étant donné un polynôme de degré , il est conjecturé que le nombre de points prépériodiques de est borné par une constante ne dépendant que de et . Cependant, les seuls exemples de familles paramétriques de polynômes sans points prépériodiques supposent ou et . Dans cet article, étant donné un entier , nous démontrons qu’il existe une infinité de familles paramétriques de polynômes de la forme , , sans points prépériodiques rationnels pour tout .
Revised:
Accepted:
Published online:
Mohammad Sadek 1
@article{CRMATH_2021__359_2_195_0, author = {Mohammad Sadek}, title = {Families of polynomials of every degree with no rational preperiodic points}, journal = {Comptes Rendus. Math\'ematique}, pages = {195--197}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {2}, year = {2021}, doi = {10.5802/crmath.173}, language = {en}, }
Mohammad Sadek. Families of polynomials of every degree with no rational preperiodic points. Comptes Rendus. Mathématique, Volume 359 (2021) no. 2, pp. 195-197. doi : 10.5802/crmath.173. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.173/
[1] The distribution of Galois groups and Hilbert’s irreducibility theorem, Proc. Lond. Math. Soc., Volume 43 (1981), pp. 227-250 | DOI | MR | Zbl
[2] Cycles of quadratic polynomials and rational points on a genus-2 curve, Duke Math. J., Volume 90 (1997) no. 3, pp. 435-463 | DOI | MR | Zbl
[3] Canonical heights and preperiodic points for certain weighted homogeneous families of polynomials, Int. Math. Res. Not., Volume 2019 (2019) no. 15, pp. 4859-4879 | DOI | MR
[4] Twists of superelliptic curves without rational points, Int. Math. Res. Not., Volume 2018 (2018) no. 4, pp. 1153-1176 | MR | Zbl
[5] Arithmetic properties of periodic points of quadratic maps. II, Acta Arith., Volume 87 (1998) no. 2, pp. 89-102 | DOI | MR | Zbl
[6] Rational periodic points of rational functions, Int. Math. Res. Not., Volume 1994 (1994) no. 2, pp. 97-110 | DOI | MR | Zbl
[7] Cycle-lengths of a class of monic binomials, Funct. Approximatio, Comment. Math., Volume 42 (2010) no. 2, pp. 163-168 | DOI | MR | Zbl
[8] On a class of monic binomials, Proc. Steklov Inst. Math., Volume 280 (2013) no. 2, pp. 64-69 | MR | Zbl
[9] The classification of rational preperiodic points of quadratic polynomials over : a refined conjecture, Math. Z., Volume 228 (1998) no. 1, pp. 11-29 | DOI | MR | Zbl
[10] ational 6-cycles under iteration of quadratic polynomials, LMS J. Comput. Math., Volume 11 (2008), pp. 367-380 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy