In this work, we obtain the hydrostatic approximation by taking the small aspect ratio limit to the Navier–Stokes equations. The aspect ratio (the ratio of the depth to horizontal width) is a geometrical constraint in general large scale motions meaning that the vertical scale is significantly smaller than horizontal. We use the versatile relative entropy inequality to prove rigorously the limit from the compressible Navier–Stokes equations to the compressible Primitive Equations. This is the first work to use relative entropy inequality for proving hydrostatic approximation and derive the compressible Primitive Equations.
Dans ce travail, nous obtenons l’approximation hydrostatique en prenant la limite du petit rapport d’aspect des équations de Navier–Stokes. Le rapport d’aspect (le rapport de la profondeur à la largeur horizontale) est une contrainte géométrique dans les mouvements géophysiques signifiant que l’échelle verticale est nettement plus petite que l’horizontale. Nous utilisons l’inégalité d’entropie relative pour prouver rigoureusement la limite des équations de Navier–Stokes compressibles aux équations primitives compressibles. C’est le premier travail qui utilise l’inégalité d’entropie relative pour prouver l’approximation hydrostatique et dériver les équations primitives compressibles.
Accepted:
Published online:
Hongjun Gao 1; Šárka Nečasová 2; Tong Tang 3
@article{CRMATH_2021__359_6_639_0, author = {Hongjun Gao and \v{S}\'arka Ne\v{c}asov\'a and Tong Tang}, title = {On the hydrostatic approximation of compressible anisotropic {Navier{\textendash}Stokes} equations}, journal = {Comptes Rendus. Math\'ematique}, pages = {639--644}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.186}, language = {en}, }
TY - JOUR AU - Hongjun Gao AU - Šárka Nečasová AU - Tong Tang TI - On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations JO - Comptes Rendus. Mathématique PY - 2021 SP - 639 EP - 644 VL - 359 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.186 LA - en ID - CRMATH_2021__359_6_639_0 ER -
%0 Journal Article %A Hongjun Gao %A Šárka Nečasová %A Tong Tang %T On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations %J Comptes Rendus. Mathématique %D 2021 %P 639-644 %V 359 %N 6 %I Académie des sciences, Paris %R 10.5802/crmath.186 %G en %F CRMATH_2021__359_6_639_0
Hongjun Gao; Šárka Nečasová; Tong Tang. On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 639-644. doi : 10.5802/crmath.186. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.186/
[1] Mathematical justification of the hydrostatic approximation in the primitive equations of geophysical fluid dynamics, SIAM J. Math. Anal., Volume 33 (2001), pp. 847-859 | DOI | MR | Zbl
[2] Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., Volume 188 (2018) no. 2, pp. 577-684 | DOI | MR | Zbl
[3] Global well-posedness of the three-dimensional viscous primitive equations of large scale ocean and atmosphere dynamics, Ann. Math., Volume 166 (2007) no. 1, pp. 245-267 | MR | Zbl
[4] Derivation of the Navier-Stokes-Poisson system with radiation for an accretion disk, J. Math. Fluid Mech., Volume 20 (2018) no. 2, pp. 697-719 | DOI | MR | Zbl
[5] Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system, J. Math. Fluid Mech., Volume 14 (2012) no. 4, pp. 717-730 | DOI | MR | Zbl
[6] Rigorous justification of the hydrostatic approximation for the primitive equations by scaled Navier-Stokes equations (2018) (https://arxiv.org/abs/1808.02410) | Zbl
[7] On the hydrostatic approximation of compressible anisotropic Navier–Stokes equations (2020) (preprint Institute of Mathematics)
[8] The primitive equations as the small aspect ratio limit of the Navier–Stokes equations: rigorous justification of the hydrostatic approximation, J. Math. Pures Appl., Volume 124 (2019), pp. 30-58 | MR | Zbl
[9] New formulations of the primitive equations of atmosphere and applications, Nonlinearity, Volume 5 (1992) no. 2, pp. 237-288 | DOI | MR | Zbl
[10] Local well-posedness of strong solutions to the three-dimensional compressible Primitive Equations (2018) (https://arxiv.org/abs/1806.09868v1) | Zbl
[11] Compressible Navier-Stokes equations on thin domains, J. Math. Fluid Mech., Volume 16 (2014) no. 3, pp. 571-594 | DOI | MR | Zbl
[12] Geophysical Fluid Dynamics, Springer, 1979 | Zbl
Cited by Sources:
Comments - Policy