We give a simple proof of a result on the -lemma property under a blow-up transformation by Deligne–Griffiths–Morgan–Sullivan’s criterion. Here, we use an explicit blow-up formula for Dolbeault cohomology given in our previous work, which can be induced by a morphism expressed on the level of spaces of forms and currents. At last, we discuss the heredity and bimeromorphic invariance of the -lemma property.
Revised:
Accepted:
Published online:
Lingxu Meng 1
@article{CRMATH_2021__359_6_645_0, author = {Lingxu Meng}, title = {The heredity and bimeromorphic invariance of the $\partial \protect \,\protect \overline{\protect \!\partial }$-lemma property}, journal = {Comptes Rendus. Math\'ematique}, pages = {645--650}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {6}, year = {2021}, doi = {10.5802/crmath.203}, language = {en}, }
TY - JOUR AU - Lingxu Meng TI - The heredity and bimeromorphic invariance of the $\partial \protect \,\protect \overline{\protect \!\partial }$-lemma property JO - Comptes Rendus. Mathématique PY - 2021 SP - 645 EP - 650 VL - 359 IS - 6 PB - Académie des sciences, Paris DO - 10.5802/crmath.203 LA - en ID - CRMATH_2021__359_6_645_0 ER -
%0 Journal Article %A Lingxu Meng %T The heredity and bimeromorphic invariance of the $\partial \protect \,\protect \overline{\protect \!\partial }$-lemma property %J Comptes Rendus. Mathématique %D 2021 %P 645-650 %V 359 %N 6 %I Académie des sciences, Paris %R 10.5802/crmath.203 %G en %F CRMATH_2021__359_6_645_0
Lingxu Meng. The heredity and bimeromorphic invariance of the $\partial \protect \,\protect \overline{\protect \!\partial }$-lemma property. Comptes Rendus. Mathématique, Volume 359 (2021) no. 6, pp. 645-650. doi : 10.5802/crmath.203. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.203/
[1] Torification and factorization of birational maps, J. Am. Math. Soc., Volume 15 (2002) no. 3, pp. 531-572 | DOI | MR | Zbl
[2] Proper modifications of generalized -Kähler manifolds, J. Geom. Anal., Volume 27 (2017) no. 2, pp. 947-967 | DOI | MR | Zbl
[3] Note on Dolbeault cohomology and Hodge structures up to bimeromorphisms, Complex Manifolds, Volume 7 (2002) no. 1, pp. 194-214 | DOI | MR | Zbl
[4] On the -lemma and Bott–Chern cohomology, Invent. Math., Volume 192 (2013) no. 3, pp. 71-81 | DOI | MR | Zbl
[5] On compact Kähler surfaces, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 287-302 | DOI | Numdam | MR | Zbl
[6] Real homotopy theory of Kähler manifolds, Invent. Math., Volume 29 (1975) no. 3, pp. 245-274 | DOI | Zbl
[7] The -lemma for general Clemens manifolds, Pure Appl. Math. Q., Volume 15 (2019) no. 4, pp. 1001-1028 | DOI | MR | Zbl
[8] Courants kählériens et surfaces compactes, Ann. Inst. Fourier, Volume 49 (1999) no. 1, pp. 263-285 | DOI | Numdam | MR | Zbl
[9] Mayer–Vietoris systems and their applications (2019) (https://arxiv.org/abs/1811.10500v3)
[10] Leray–Hirsch theorem and blow-up formula for Dolbeault cohomology, Ann. Mat. Pura Appl., Volume 199 (2020) no. 5, pp. 1997-2014 | DOI | MR | Zbl
[11] On a certain generalization of Jacobian manifold, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 30 (1966) no. 1, pp. 175-182 | MR | Zbl
[12] Dolbeault cohomologies of blowing up complex manifolds, J. Math. Pures Appl., Volume 130 (2019), pp. 68-92 | MR | Zbl
[13] Dolbeault cohomologies of blowing up complex manifolds II: bundle-valued case, J. Math. Pures Appl., Volume 133 (2020), pp. 1-38 | MR | Zbl
[14] -lemma, double complex and cohomology (2020) (https://hal.archives-ouvertes.fr/hal-02904394)
[15] Double complexes and Hodge stuctures as vector bundles, Ph. D. Thesis, WWU, Münster (2018) (https://d-nb.info/1165650959/34) | Zbl
[16] The double complex of a blow-up, Int. Math. Res. Not., Volume 2019 (2019), rnz139
[17] Bott–Chern blow-up formula and bimeromorphic invariance of the -lemma for threefolds, Trans. Am. Math. Soc., Volume 373 (2020) no. 12, pp. 8885-8909 | DOI | Zbl
Cited by Sources:
Comments - Policy