logo CRAS
Comptes Rendus. Mathématique
Statistics
Dimension reduction in spatial regression with kernel SAVE method
Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 475-479.

We consider the smoothed version of sliced average variance estimation (SAVE) dimension reduction method for dealing with spatially dependent data that are observations of a strongly mixing random field. We propose kernel estimators for the interest matrix and the effective dimension reduction (EDR) space, and show their consistency.

Nous considérons la version lisse de la méthode SAVE pour prendre en compte des observations spatialement dépendantes émanant d’un champ aléatoire fortement mélangeant. Nous proposons des estimateurs à noyau pour la matrice d’intérêt et l’espace de rédution de la dimension, et montrons leur convergence.

Received:
Accepted:
Published online:
DOI: https://doi.org/10.5802/crmath.187
Mètolidji Moquilas Raymond Affossogbe 1; Guy Martial Nkiet 2; Carlos Ogouyandjou 1

1. Institut de Mathématiques et de Sciences Physiques,Porto Novo, Bénin
2. Université des Sciences et Techniques de Masuku, Franceville, Gabon
@article{CRMATH_2021__359_4_475_0,
     author = {M\`etolidji Moquilas Raymond Affossogbe and Guy Martial Nkiet and Carlos Ogouyandjou},
     title = {Dimension reduction in spatial regression with kernel {SAVE} method},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {475--479},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {4},
     year = {2021},
     doi = {10.5802/crmath.187},
     zbl = {07362167},
     language = {en},
}
TY  - JOUR
AU  - Mètolidji Moquilas Raymond Affossogbe
AU  - Guy Martial Nkiet
AU  - Carlos Ogouyandjou
TI  - Dimension reduction in spatial regression with kernel SAVE method
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 475
EP  - 479
VL  - 359
IS  - 4
PB  - Académie des sciences, Paris
UR  - https://zbmath.org/?q=an%3A07362167
UR  - https://doi.org/10.5802/crmath.187
DO  - 10.5802/crmath.187
LA  - en
ID  - CRMATH_2021__359_4_475_0
ER  - 
%0 Journal Article
%A Mètolidji Moquilas Raymond Affossogbe
%A Guy Martial Nkiet
%A Carlos Ogouyandjou
%T Dimension reduction in spatial regression with kernel SAVE method
%J Comptes Rendus. Mathématique
%D 2021
%P 475-479
%V 359
%N 4
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.187
%R 10.5802/crmath.187
%G en
%F CRMATH_2021__359_4_475_0
Mètolidji Moquilas Raymond Affossogbe; Guy Martial Nkiet; Carlos Ogouyandjou. Dimension reduction in spatial regression with kernel SAVE method. Comptes Rendus. Mathématique, Volume 359 (2021) no. 4, pp. 475-479. doi : 10.5802/crmath.187. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.187/

[1] M. K. Attouch; A. Gheriballah; A. Laksaci Robust nonparametric estimation for functional spatial regression, Recent Advances in Functional Data Analysis and Related Topics (Contributions to Statistics), Physica-Verlag, 2011, pp. 27-31 | Article

[2] Michel Carbon; Christian Francq; Lanh Tat Tran Kernel regression estimation for random fields, J. Stat. Plann. Inference, Volume 137 (2007) no. 3, pp. 778-798 | Article | MR 2301715 | Zbl 1104.62105

[3] Michel Carbon; Lanh Tat Tran; Berlin Wu Kernel density estimation for random fields, Stat. Probab. Lett., Volume 36 (1997) no. 2, pp. 115-125 | Article | Zbl 0892.62017

[4] R. D. Cook; S. Weisberg Discussion of a paper by K. C. Li, J. Am. Stat. Assoc., Volume 86 (1991), pp. 328-332

[5] Louis Ferré; Anne-Françoise Yao Functional Sliced Inverse Regression analysis, Statistics, Volume 37 (2003) no. 6, pp. 475-488 | Article | MR 2022235

[6] Marc Hallin; Zudi Lu; Lanh Tat Tran Local linear spatial regression, Ann. Stat., Volume 32 (2004) no. 6, pp. 2469-2500 | MR 2153992 | Zbl 1069.62075

[7] Jiexiang Li; Lanh Tat Tran Nonparametric estimation of conditional expectation, J. Stat. Plann. Inference, Volume 139 (2009) no. 2, pp. 164-175 | MR 2473995 | Zbl 1149.62078

[8] Ker-Chau Li Sliced inverse regression for dimension reduction, J. Am. Stat. Assoc., Volume 86 (1991) no. 414, pp. 316-342 | MR 1137117 | Zbl 0742.62044

[9] J. M. Loubes; Anne-Françoise Yao Kernel Inverse Regression for spatial random fields, Int. J. Appl. Math. Stat., Volume 32 (2013), pp. 1-26

[10] Zudi Lu; Xing Chen Spatial kernel regression estimation : weak consistency, Stat. Probab. Lett., Volume 68 (2004) no. 2, pp. 125-136 | MR 2066167 | Zbl 1058.62079

[11] Raquel Menezes; Pilar García-Soidán; Célia Ferreira Nonparametric spatial prediction under stochastic sampling design, J. Nonparametric Stat., Volume 22 (2010) no. 3, pp. 363-377 | Article | MR 2662598 | Zbl 1189.62155

[12] Lanh Tat Tran Kernel density estimation on random fields, J. Multivariate Anal., Volume 34 (1990) no. 1, pp. 37-53 | Article | MR 1062546 | Zbl 0709.62085

[13] Li-Xing Zhu; Kai-Tai Fang Asymptotics for kernel estimate of sliced inverse regression, Ann. Stat., Volume 24 (1996) no. 3, pp. 1053-1068 | MR 1401836 | Zbl 0864.62027

[14] Liping Zhu; Li-Xing Zhu On kernel method for sliced average variance estimation, J. Multivariate Anal., Volume 98 (2007) no. 5, pp. 970-991 | MR 2325455 | Zbl 1113.62044

Cited by Sources: