Comptes Rendus
Statistiques
On nonparametric conditional quantile estimation for non-stationary spatial processes
[Sur l’estimation non paramétrique du quantile conditionnel des processus spatiaux non stationnaires]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 847-852.

Dans cette note, nous présentons un estimateur à noyau du quantile conditionnel d’un processus spatial non-stationnaire, pour un but de prédiction du processus considéré en un site non-observé. L’originalité vient du fait que l’estimateur permet de prendre en compte une éventuelle dépendance locale des données. Une étude asymptotique basée sur les convergences presque complète et en moyenne d’ordre q de l’estimateur est proposée.

A kernel conditional quantile estimate of a real-valued non-stationary spatial process is proposed for a prediction goal at a non-observed location of the underlying process. The originality is based on the ability to take into account some local spatial dependency. Large sample properties based on almost complete and L q -consistencies of the estimator are established.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.400
Classification : 62H11, 62G20, 62M30

Serge Hippolyte Arnaud Kanga 1 ; Ouagnina Hili 1 ; Sophie Dabo-Niang 2

1 UMRI Mathématiques et Nouvelles Technologies de l’Information, Institut National Polytechnique Félix Houphouët Boigny, BP 1093 Yamoussoukro, Côte d’Ivoire
2 Laboratoire Paul Painlevé UMR CNRS 8524, INRIA-MODAL Université de Lille, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G5_847_0,
     author = {Serge Hippolyte Arnaud Kanga and Ouagnina Hili and Sophie Dabo-Niang},
     title = {On nonparametric conditional quantile estimation for non-stationary spatial processes},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {847--852},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.400},
     language = {en},
}
TY  - JOUR
AU  - Serge Hippolyte Arnaud Kanga
AU  - Ouagnina Hili
AU  - Sophie Dabo-Niang
TI  - On nonparametric conditional quantile estimation for non-stationary spatial processes
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 847
EP  - 852
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.400
LA  - en
ID  - CRMATH_2023__361_G5_847_0
ER  - 
%0 Journal Article
%A Serge Hippolyte Arnaud Kanga
%A Ouagnina Hili
%A Sophie Dabo-Niang
%T On nonparametric conditional quantile estimation for non-stationary spatial processes
%J Comptes Rendus. Mathématique
%D 2023
%P 847-852
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.400
%G en
%F CRMATH_2023__361_G5_847_0
Serge Hippolyte Arnaud Kanga; Ouagnina Hili; Sophie Dabo-Niang. On nonparametric conditional quantile estimation for non-stationary spatial processes. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 847-852. doi : 10.5802/crmath.400. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.400/

[1] Gérard Biau; Benoît Cadre Nonparametric Spatial Prediction, Stat. Inference Stoch. Process., Volume 7 (2004) no. 3, pp. 327-349 | DOI | Zbl

[2] Sophie Dabo-Niang; Leila Hamdad; Camille Ternynck; Anne-Françoise Yao A Kernel Spatial Density Estimation Allowing for the Analysis of Spatial Clustering. Application to Monsoon Asia Drought Atlas data, Stochastic environmental research and risk assessment, Volume 28 (2014) no. 8, pp. 2075-2099 | DOI

[3] Sophie Dabo-Niang; Camille Ternynck; Anne-Françoise Yao Nonparametric Prediction of Spatial Multivariate data, J. Nonparametric Stat., Volume 28 (2016) no. 2, pp. 428-458 | DOI | Zbl

[4] Sophie Dabo-Niang; Baba Thiam Robust Quantile Estimation and Prediction for Spatial Processes, Stat. Probab. Lett., Volume 80 (2010) no. 17-18, pp. 1447-1458 | DOI | Zbl

[5] Sophie Dabo-Niang; Anne-Françoise Yao Kernel Regression Estimation for Continuous Spatial Processes, Math. Methods Stat., Volume 16 (2007) no. 4, pp. 298-317 | DOI | Zbl

[6] Mohamed El Machkouri; Xiequan Fan; Lucas Reding On the Nadaraya–Watson kernel regression estimator for irregularly spaced spatial data, J. Stat. Plann. Inference, Volume 205 (2020), pp. 92-114 | DOI | Zbl

[7] Frédéric Ferraty; Abbes Rabhi; Philippe Vieu Conditional Quantiles for Dependent Functional Data with Application to the Climatic El Niño Phenomenon, Sankhyā, Volume 67 (2005) no. 2, pp. 378-398 | Zbl

[8] Marc Hallin; Zudi Lu; Keming Yu Local Linear Spatial Quantile Regression, Bernoulli, Volume 15 (2009) no. 3, pp. 659-686 | Zbl

[9] Meiling Huang; Christine Nguyen A Nonparametric Approch for Quantile Regression, J. Stat. Distrib. Appl., Volume 5 (2018), 3 | Zbl

[10] Jussi Klemelä Density Estimation with Locally Identically Distributed Data and with Locally Stationary Data, J. Time Ser. Anal., Volume 29 (2008) no. 1, pp. 125-141 | Zbl

[11] Roger Koenker; Ivan Mizera Penalized Triograms: Total Variation Regularization for Bivariate Smoothing, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 66 (2004) no. 1, pp. 145-164 | DOI | Zbl

[12] S. A. Ould Abdi; Sophie Dabo-Niang; Aliou Diop; A. Ould Abdi Consistency of a Nonparametric Conditional Quantile Estimator for Random Fields, Math. Methods Stat., Volume 19 (2010) no. 1, pp. 1-21 | DOI | Zbl

[13] Camille Ternynck Contributions à la Modélisation de Données Spatiales et Fonctionnelles: Applications, Ph. D. Thesis, Université Charles de Gaulle-Lille III, Lille, France (2014)

Cité par Sources :

Commentaires - Politique