[Sur l’estimation non paramétrique du quantile conditionnel des processus spatiaux non stationnaires]
Dans cette note, nous présentons un estimateur à noyau du quantile conditionnel d’un processus spatial non-stationnaire, pour un but de prédiction du processus considéré en un site non-observé. L’originalité vient du fait que l’estimateur permet de prendre en compte une éventuelle dépendance locale des données. Une étude asymptotique basée sur les convergences presque complète et en moyenne d’ordre de l’estimateur est proposée.
A kernel conditional quantile estimate of a real-valued non-stationary spatial process is proposed for a prediction goal at a non-observed location of the underlying process. The originality is based on the ability to take into account some local spatial dependency. Large sample properties based on almost complete and -consistencies of the estimator are established.
Accepté le :
Publié le :
Serge Hippolyte Arnaud Kanga 1 ; Ouagnina Hili 1 ; Sophie Dabo-Niang 2
@article{CRMATH_2023__361_G5_847_0, author = {Serge Hippolyte Arnaud Kanga and Ouagnina Hili and Sophie Dabo-Niang}, title = {On nonparametric conditional quantile estimation for non-stationary spatial processes}, journal = {Comptes Rendus. Math\'ematique}, pages = {847--852}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.400}, language = {en}, }
TY - JOUR AU - Serge Hippolyte Arnaud Kanga AU - Ouagnina Hili AU - Sophie Dabo-Niang TI - On nonparametric conditional quantile estimation for non-stationary spatial processes JO - Comptes Rendus. Mathématique PY - 2023 SP - 847 EP - 852 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.400 LA - en ID - CRMATH_2023__361_G5_847_0 ER -
%0 Journal Article %A Serge Hippolyte Arnaud Kanga %A Ouagnina Hili %A Sophie Dabo-Niang %T On nonparametric conditional quantile estimation for non-stationary spatial processes %J Comptes Rendus. Mathématique %D 2023 %P 847-852 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.400 %G en %F CRMATH_2023__361_G5_847_0
Serge Hippolyte Arnaud Kanga; Ouagnina Hili; Sophie Dabo-Niang. On nonparametric conditional quantile estimation for non-stationary spatial processes. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 847-852. doi : 10.5802/crmath.400. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.400/
[1] Nonparametric Spatial Prediction, Stat. Inference Stoch. Process., Volume 7 (2004) no. 3, pp. 327-349 | DOI | Zbl
[2] A Kernel Spatial Density Estimation Allowing for the Analysis of Spatial Clustering. Application to Monsoon Asia Drought Atlas data, Stochastic environmental research and risk assessment, Volume 28 (2014) no. 8, pp. 2075-2099 | DOI
[3] Nonparametric Prediction of Spatial Multivariate data, J. Nonparametric Stat., Volume 28 (2016) no. 2, pp. 428-458 | DOI | Zbl
[4] Robust Quantile Estimation and Prediction for Spatial Processes, Stat. Probab. Lett., Volume 80 (2010) no. 17-18, pp. 1447-1458 | DOI | Zbl
[5] Kernel Regression Estimation for Continuous Spatial Processes, Math. Methods Stat., Volume 16 (2007) no. 4, pp. 298-317 | DOI | Zbl
[6] On the Nadaraya–Watson kernel regression estimator for irregularly spaced spatial data, J. Stat. Plann. Inference, Volume 205 (2020), pp. 92-114 | DOI | Zbl
[7] Conditional Quantiles for Dependent Functional Data with Application to the Climatic El Niño Phenomenon, Sankhyā, Volume 67 (2005) no. 2, pp. 378-398 | Zbl
[8] Local Linear Spatial Quantile Regression, Bernoulli, Volume 15 (2009) no. 3, pp. 659-686 | Zbl
[9] A Nonparametric Approch for Quantile Regression, J. Stat. Distrib. Appl., Volume 5 (2018), 3 | Zbl
[10] Density Estimation with Locally Identically Distributed Data and with Locally Stationary Data, J. Time Ser. Anal., Volume 29 (2008) no. 1, pp. 125-141 | Zbl
[11] Penalized Triograms: Total Variation Regularization for Bivariate Smoothing, J. R. Stat. Soc., Ser. B, Stat. Methodol., Volume 66 (2004) no. 1, pp. 145-164 | DOI | Zbl
[12] Consistency of a Nonparametric Conditional Quantile Estimator for Random Fields, Math. Methods Stat., Volume 19 (2010) no. 1, pp. 1-21 | DOI | Zbl
[13] Contributions à la Modélisation de Données Spatiales et Fonctionnelles: Applications, Ph. D. Thesis, Université Charles de Gaulle-Lille III, Lille, France (2014)
Cité par Sources :
Commentaires - Politique