Comptes Rendus
Programmation dynamique, Apprentissage statistique
Parameter Identification by Statistical Learning of a Stochastic Dynamical System Modelling a Fishery with price variation
[Identification de paramètre par apprentissage statistique dans un système dynamique modélisant un site de pêche à prix variable]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 245-253.

Dans cette courte note nous étudions les performances de l’apprentissage statistique par réseau de neurones pour l’identification des paramètres d’un modèle de pêche. L’idée est d’observer la pêche pendant quelques jours et d’en déduire les paramètres du modèle et donc la biomasse de poisson sur le long terme.

In this short paper we report on an inverse problem for parameter setting of a model used for the modelling of fishing on the West African coast. We compare the solution of this inverse problem by a Neural Network with the more classical algorithms of optimisation and stochastic control. The Neural Network does much better.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.2
Classification : 93E20

Pierre Auger 1 ; Olivier Pironneau 2

1 IRD UMI 209, UMMISCO, Sorbonne Université, Bondy, France
2 LJLL, Sorbonne Université, Paris 75252, cedex 5, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_3_245_0,
     author = {Pierre Auger and Olivier Pironneau},
     title = {Parameter {Identification} by {Statistical} {Learning} of a {Stochastic} {Dynamical} {System} {Modelling} a {Fishery} with price variation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {245--253},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.2},
     language = {en},
}
TY  - JOUR
AU  - Pierre Auger
AU  - Olivier Pironneau
TI  - Parameter Identification by Statistical Learning of a Stochastic Dynamical System Modelling a Fishery with price variation
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 245
EP  - 253
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.2
LA  - en
ID  - CRMATH_2020__358_3_245_0
ER  - 
%0 Journal Article
%A Pierre Auger
%A Olivier Pironneau
%T Parameter Identification by Statistical Learning of a Stochastic Dynamical System Modelling a Fishery with price variation
%J Comptes Rendus. Mathématique
%D 2020
%P 245-253
%V 358
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmath.2
%G en
%F CRMATH_2020__358_3_245_0
Pierre Auger; Olivier Pironneau. Parameter Identification by Statistical Learning of a Stochastic Dynamical System Modelling a Fishery with price variation. Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 245-253. doi : 10.5802/crmath.2. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.2/

[1] T. Brochier; P. Auger; D. Thiao; A. Bah; S. Ly; T. Nguyen Huu; P. Brehmer Can overexploited fisheries recover by self-organization? Reallocation of the fishing effort as an emergent form of governance, Marine Policy, Volume 95 (2018), pp. 46-56 | DOI

[2] François Chollet Deep learning with Python, Manning publications, 2017

[3] Ian Goodfellow; Yoshua Bengio; Aaron Courville Deep Learning, MIT Press, 2016 (http://www.deeplearningbook.org) | Zbl

[4] Frédéric Hecht New development in FreeFem++, J. Numer. Math., Volume 20 (2012) no. 3-4, pp. 251-265 | MR | Zbl

[5] Mathieu Laurière; Olivier Pironneau Dynamic programming for mean-field type control, J. Optim. Theory Appl., Volume 169 (2016) no. 3, pp. 902-924 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique