[Opérateurs différentiels linéaires
Sur le supercercle
Over the
Révisé le :
Accepté le :
Publié le :
Hafedh Khalfoun 1, 2 ; Ismail Laraiedh 1, 2

@article{CRMATH_2020__358_1_45_0, author = {Hafedh Khalfoun and Ismail Laraiedh}, title = {The linear $\protect \mathfrak{n}(1|N)${\textendash}invariant differential operators and $\protect \mathfrak{n}(1|N)${\textendash}relative cohomology}, journal = {Comptes Rendus. Math\'ematique}, pages = {45--58}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {1}, year = {2020}, doi = {10.5802/crmath.22}, language = {en}, }
TY - JOUR AU - Hafedh Khalfoun AU - Ismail Laraiedh TI - The linear $\protect \mathfrak{n}(1|N)$–invariant differential operators and $\protect \mathfrak{n}(1|N)$–relative cohomology JO - Comptes Rendus. Mathématique PY - 2020 SP - 45 EP - 58 VL - 358 IS - 1 PB - Académie des sciences, Paris DO - 10.5802/crmath.22 LA - en ID - CRMATH_2020__358_1_45_0 ER -
%0 Journal Article %A Hafedh Khalfoun %A Ismail Laraiedh %T The linear $\protect \mathfrak{n}(1|N)$–invariant differential operators and $\protect \mathfrak{n}(1|N)$–relative cohomology %J Comptes Rendus. Mathématique %D 2020 %P 45-58 %V 358 %N 1 %I Académie des sciences, Paris %R 10.5802/crmath.22 %G en %F CRMATH_2020__358_1_45_0
Hafedh Khalfoun; Ismail Laraiedh. The linear $\protect \mathfrak{n}(1|N)$–invariant differential operators and $\protect \mathfrak{n}(1|N)$–relative cohomology. Comptes Rendus. Mathématique, Volume 358 (2020) no. 1, pp. 45-58. doi : 10.5802/crmath.22. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.22/
[1] On the cohomology of the Lie superalgebra of contact vectorfields on
[2] Cohomology of
[3] The linear
[4] Conformal symbols and the action of Contact vector fields over the superline, J. Reine Angew. Math., Volume 633 (2009), pp. 115-163 | MR | Zbl
[5] Cohomology of infinite-dimensional Lie algebras, Plenum Press, 1986 | Zbl
[6] Differential operators on supercircle: conformally equivariant quantization and symbol calculus, Lett. Math. Phys., Volume 79 (2007) no. 1, pp. 51-65 | DOI | MR | Zbl
[7] Lie superalgebras of string theories, Acta. Math. Vietnam., Volume 26 (2001) no. 1, pp. 27-63 | MR | Zbl
[8] Invariant operators on supermanifolds and standard models, Multiple facets of quantization and supersymmetry, World Scientific, 2002, pp. 508-555 | DOI | Zbl
[9] Introduction to the theory of supermanifolds, Usp. Mat. Nauk, Volume 35 (1980) no. 1, pp. 3-57 translated in English in Russ. Math. Surv. 35 (1980), no. 1, p. 1-64 | MR | Zbl
[10] Deforming the Lie algebra of vector fields on
[11] Deforming the Lie algebra of vector fields on
[12] The analogs of Riemann and Penrose tensors on supermanifolds (2005) (https://arxiv.org/abs/math/0510165)
Cité par Sources :
Commentaires - Politique
Vous devez vous connecter pour continuer.
S'authentifier