logo CRAS
Comptes Rendus. Mathématique
Géométrie et Topologie, Théorie des groupes
Free inverse monoids are not FP 2
Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 1047-1057.

We give a topological proof that a free inverse monoid on one or more generators is neither of type left-FP 2 nor right-FP 2 . This strengthens a classical result of Schein that such monoids are not finitely presented as monoids.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.247
Classification : 20M50,  20M18,  20M05,  20J05
Robert D. Gray 1 ; Benjamin Steinberg 2

1. School of Mathematics, University of East Anglia, Norwich NR4 7TJ, UK
2. Department of Mathematics, City College of New York, Convent Avenue at 138th Street, New York, New York 10031, USA
@article{CRMATH_2021__359_8_1047_0,
     author = {Robert D. Gray and Benjamin Steinberg},
     title = {Free inverse monoids are not ${\protect \rm FP}_2$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1047--1057},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {8},
     year = {2021},
     doi = {10.5802/crmath.247},
     language = {en},
}
TY  - JOUR
AU  - Robert D. Gray
AU  - Benjamin Steinberg
TI  - Free inverse monoids are not ${\protect \rm FP}_2$
JO  - Comptes Rendus. Mathématique
PY  - 2021
DA  - 2021///
SP  - 1047
EP  - 1057
VL  - 359
IS  - 8
PB  - Académie des sciences, Paris
UR  - https://doi.org/10.5802/crmath.247
DO  - 10.5802/crmath.247
LA  - en
ID  - CRMATH_2021__359_8_1047_0
ER  - 
%0 Journal Article
%A Robert D. Gray
%A Benjamin Steinberg
%T Free inverse monoids are not ${\protect \rm FP}_2$
%J Comptes Rendus. Mathématique
%D 2021
%P 1047-1057
%V 359
%N 8
%I Académie des sciences, Paris
%U https://doi.org/10.5802/crmath.247
%R 10.5802/crmath.247
%G en
%F CRMATH_2021__359_8_1047_0
Robert D. Gray; Benjamin Steinberg. Free inverse monoids are not ${\protect \rm FP}_2$. Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 1047-1057. doi : 10.5802/crmath.247. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.247/

[1] Kenneth S. Brown Cohomology of groups, Graduate Texts in Mathematics, 87, Springer, 1994

[2] Lazar M. Gluskin Elementary generalized groups, Mat. Sb., N. Ser., Volume 41 (1957) no. 83, pp. 23-36 | MR 90595 | Zbl 0208.03004

[3] Robert D. Gray; Benjamin Steinberg A Lyndon’s identity theorem for one-relator monoids (2019) https://arxiv.org/abs/1910.09914

[4] Peter M. Higgins Techniques of semigroup theory, Oxford Science Publications, Oxford University Press, 1992 | Zbl 0744.20046

[5] John M. Howie Fundamentals of semigroup theory, London Mathematical Society Monographs, 12, Clarendon Press, 1995 | MR 1455373 | Zbl 0835.20077

[6] Sergei V. Ivanov Relation modules and relation bimodules of groups, semigroups and associative algebras, Int. J. Algebra Comput., Volume 1 (1991) no. 1, pp. 89-114 | Article | MR 1112300

[7] Mark Lawson Inverse semigroups. The theory of partial symmetries, World Scientific, 1998 | Zbl 1079.20505

[8] Walter D. Munn Free inverse semigroups, Proc. Lond. Math. Soc., Volume 29 (1974), pp. 385-404 | Article | MR 360881

[9] Friedrich Otto; Yuji Kobayashi Properties of monoids that are presented by finite convergent string-rewriting systems—a survey, Advances in algorithms, languages, and complexity, Kluwer Academic Publishers, 1997, pp. 225-266 | Article | Zbl 0867.68065

[10] Mario Petrich Inverse semigroups, Pure and Applied Mathematics, John Wiley & Sons, 1984 | Zbl 0546.20053

[11] Stephen J. Pride Homological finiteness conditions for groups, monoids, and algebras, Commun. Algebra, Volume 34 (2006) no. 10, pp. 3525-3536 | Article | MR 2260926 | Zbl 1122.20034

[12] H. E. Scheiblich Free inverse semigroups, Proc. Am. Math. Soc., Volume 38 (1973), pp. 1-7 | Article | MR 310093 | Zbl 0256.20079

[13] Boris M. Schein Free inverse semigroups are not finitely presentable, Acta Math. Acad. Sci. Hung., Volume 26 (1975), pp. 41-52 | Article | MR 360878 | Zbl 0301.20041

Cité par Sources :