Comptes Rendus
Géométrie et Topologie
Completeness of certain compact Lorentzian locally symmetric spaces
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 819-824.

We show that a compact Lorentzian locally symmetric space is geodesically complete if the Lorentzian factor in the local de Rham–Wu decomposition is of Cahen–Wallach type or if the maximal flat factor is one-dimensional and time-like. Our proof uses a recent result by Mehidi and Zeghib and an earlier result by Romero and Sánchez.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.449
Classification : 53C50, 53C35
Mots clés : Lorentzian manifolds, Lorentzian symmetric spaces, geodesic completeness

Thomas Leistner 1 ; Thomas Munn 2

1 School of Mathematical Sciences, University of Adelaide, SA 5005, Australia
2 Lund University, Faculty of Science, Centre for Mathematical Sciences, Box 118, 22100 Lund, Sweden
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G4_819_0,
     author = {Thomas Leistner and Thomas Munn},
     title = {Completeness of certain compact {Lorentzian} locally symmetric spaces},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {819--824},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.449},
     language = {en},
}
TY  - JOUR
AU  - Thomas Leistner
AU  - Thomas Munn
TI  - Completeness of certain compact Lorentzian locally symmetric spaces
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 819
EP  - 824
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.449
LA  - en
ID  - CRMATH_2023__361_G4_819_0
ER  - 
%0 Journal Article
%A Thomas Leistner
%A Thomas Munn
%T Completeness of certain compact Lorentzian locally symmetric spaces
%J Comptes Rendus. Mathématique
%D 2023
%P 819-824
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.449
%G en
%F CRMATH_2023__361_G4_819_0
Thomas Leistner; Thomas Munn. Completeness of certain compact Lorentzian locally symmetric spaces. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 819-824. doi : 10.5802/crmath.449. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.449/

[1] Luis Alberto Aké Hau; Miguel Sánchez Compact affine manifolds with precompact holonomy are geodesically complete, J. Math. Anal. Appl., Volume 436 (2016) no. 2, pp. 1369-1371 | DOI | MR | Zbl

[2] Helga Baum; Kordian Lärz; Thomas Leistner On the full holonomy group of Lorentzian manifolds, Math. Z., Volume 277 (2014) no. 3-4, pp. 797-828 | DOI | MR | Zbl

[3] Michel Cahen; Nolan Wallach Lorentzian symmetric spaces, Bull. Am. Math. Soc., Volume 76 (1970), pp. 585-591 | DOI | MR | Zbl

[4] Yves Carrière Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math., Volume 95 (1989) no. 3, pp. 615-628 | DOI | MR | Zbl

[5] Sorin Dumitrescu; Abdelghani Zeghib Géométries lorentziennes de dimension 3: classification et complétude, Geom. Dedicata, Volume 149 (2010), pp. 243-273 | DOI | Zbl

[6] Ines Kath; Martin Olbrich Compact quotients of Cahen-Wallach spaces, Memoirs of the American Mathematical Society, 1264, American Mathematical Society, 2019, v+84 pages

[7] Bruno Klingler Complétude des variétés lorentziennes à courbure constante, Math. Ann., Volume 306 (1996) no. 2, pp. 353-370 | DOI | MR | Zbl

[8] Thomas Leistner; Daniel Schliebner Completeness of compact Lorentzian manifolds with abelian holonomy, Math. Ann., Volume 364 (2016) no. 3-4, pp. 1469-1503 | DOI | MR | Zbl

[9] Jerrold Marsden On completeness of homogeneous pseudo-riemannian manifolds, Math. J. Indiana Univ., Volume 22 (1973), pp. 1065-1066 | DOI | MR | Zbl

[10] Lilia Mehidi; Abdelghani Zeghib On completeness and dynamics of compact Brinkmann spacetimes (2022) (https://arxiv.org/abs/2205.07243)

[11] Thomas J. Munn Symmetric spaces, geometric manifolds and geodesic completeness, 2021 (Master’s thesis, University of Adelaide, School of Mathematical Sciences, https://hdl.handle.net/2440/134331)

[12] Barrett O’Neill Semi-Riemannian Geometry, Pure and Applied Mathematics, 103, Academic Press Inc., 1983, xiii+468 pages | MR

[13] Georges de Rham Sur la reductibilité d’un espace de Riemann, Comment. Math. Helv., Volume 26 (1952), pp. 328-344 | Zbl

[14] Alfonso Romero; Miguel Sánchez New properties and examples of incomplete Lorentzian tori, J. Math. Phys., Volume 35 (1992) no. 4, pp. 1992-1997 | DOI | MR | Zbl

[15] Alfonso Romero; Miguel Sánchez Completeness of compact Lorentz manifolds admitting a timelike conformal Killing vector field, Proc. Am. Math. Soc., Volume 123 (1995) no. 9, pp. 2831-2833 | DOI | MR | Zbl

[16] Hung-Hsi Wu On the de Rham decomposition theorem, Ill. J. Math., Volume 8 (1964), pp. 291-311 | MR

Cité par Sources :

Commentaires - Politique