logo CRAS
Comptes Rendus. Mathématique

Information section manquante
Sparse Brudnyi and John–Nirenberg Spaces
Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 1059-1069.

A generalization of the theory of Y. Brudnyi [7], and A. and Y. Brudnyi [5, 6], is presented. Our construction connects Brudnyi’s theory, which relies on local polynomial approximation, with new results on sparse domination. In particular, we find an analogue of the maximal theorem for the fractional maximal function, solving a problem proposed by Kruglyak–Kuznetsov. Our spaces shed light on the structure of the John–Nirenberg spaces. We show that SJN p (sparse John–Nirenberg space) coincides with L p ,1<p<. This characterization yields the John–Nirenberg inequality by extrapolation and is useful in the theory of commutators.

Reçu le :
Accepté le :
Publié le :
DOI : https://doi.org/10.5802/crmath.252
Classification : 42B35,  42B25,  46E30,  46E35
@article{CRMATH_2021__359_8_1059_0,
     author = {\'Oscar Dom{\'\i}nguez and Mario Milman},
     title = {Sparse {Brudnyi} and {John{\textendash}Nirenberg} {Spaces}},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1059--1069},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {8},
     year = {2021},
     doi = {10.5802/crmath.252},
     language = {en},
}
Óscar Domínguez; Mario Milman. Sparse Brudnyi and John–Nirenberg Spaces. Comptes Rendus. Mathématique, Tome 359 (2021) no. 8, pp. 1059-1069. doi : 10.5802/crmath.252. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.252/

[1] Emil Airta; Tuomas Hytönen; Kangwei Li; Henri Martikainen; Tuomas Oikari Off-diagonal estimates for bi-commutators (2020) https://arxiv.org/abs/2005.03548

[2] Sergey Astashkin; Mario Milman Garsia–Rodemich spaces: Local maximal functions and interpolation, Stud. Math., Volume 255 (2020) no. 1, pp. 1-26 | Article | MR 4121383 | Zbl 1457.46035

[3] Jesús Bastero; Mario Milman; Francisco J. Ruiz Commutators of the maximal and sharp functions, Proc. Am. Math. Soc., Volume 128 (2000), pp. 65-74 | MR 1777580 | Zbl 0957.42010

[4] Colin Bennett; Ronald A. DeVore; Robert Sharpley Weak-L and BMO, Ann. Math., Volume 113 (1981), pp. 601-611 | Article | MR 621018 | Zbl 0465.42015

[5] Alexander Brudnyi; Yuri A. Brudnyĭ Multivariate bounded variation functions of Jordan–Wiener type, J. Approx. Theory, Volume 251 (2020), 105346, 70 pages | MR 4040115 | Zbl 1436.26012

[6] Alexander Brudnyi; Yuri A. Brudnyĭ On the Banach structure of multivariate BV spaces, Diss. Math., Volume 548 (2020), pp. 1-52 | MR 4078209 | Zbl 1445.26012

[7] Yuri A. Brudnyĭ Spaces defined by means of local approximations, Tr. Mosk. Mat. O.-va, Volume 24 (1971), pp. 69-132 English transl. in Trans. Mosc.. Math. Soc. 24 (1971), p. 73-139 | Zbl 0254.46018

[8] Alberto P. Calderón; Antoni Zygmund On the existence of certain singular integrals, Acta Math., Volume 88 (1952), pp. 85-139 | Article | MR 52553 | Zbl 0047.10201

[9] Sergio Campanato Su un teorema di interpolazione di G. Stampacchia, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (1966), pp. 649-652 | Numdam | MR 209864 | Zbl 0195.41102

[10] Ronald R. Coifman; Richard Rochberg; Guido Weiss Factorization theorems for Hardy spaces in several variables, Ann. Math., Volume 103 (1976), pp. 611-635 | Article | MR 412721 | Zbl 0326.32011

[11] Galia Dafni; Tuomas Hytönen; Riikka Korte; Hong Yue The space JN p : nontriviality and duality, J. Funct. Anal., Volume 275 (2018) no. 3, pp. 577-603 | Article | Zbl 1402.46019

[12] Oscar Domínguez; Mario Milman (in preparation)

[13] Charles Fefferman Characterization of bounded mean oscillation, Bull. Am. Math. Soc., Volume 77 (1970), pp. 587-588 | Article | MR 280994 | Zbl 0229.46051

[14] Charles Fefferman; Elias M. Stein H p spaces of several variables, Acta Math., Volume 129 (1972), pp. 137-193 | Article | Zbl 0257.46078

[15] Michael Frazier; Björn Jawerth A discrete transform and decompositions of distribution spaces, J. Funct. Anal., Volume 93 (1990) no. 1, pp. 34-170 | Article | MR 1070037 | Zbl 0716.46031

[16] Adriano M. Garsia Martingale Inequalities: Seminar Notes on Recent Progress, Mathematics Lecture Notes Series, W. A. Benjamin, Inc., 1973 | Zbl 0284.60046

[17] Adriano M. Garsia; Eugène Rodemich Monotonicity of certain functionals under rearrangements, Ann. Inst. Fourier, Volume 24 (1974) no. 2, pp. 67-116 | Article | MR 414802 | Zbl 0274.26006

[18] Tuomas Hytönen The L p -to-L q boundedness of commutators with applications to the Jacobian operator (2021) https://arxiv.org/abs/1804.11167

[19] Svante Janson Mean oscillation and commutators of singular integral operators, Ark. Mat., Volume 16 (1978), pp. 263-270 | Article | MR 524754 | Zbl 0404.42013

[20] Fritz John; Louis Nirenberg On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | Article | MR 131498 | Zbl 0102.04302

[21] Natan Kruglyak Smooth analogues of the Calderón–Zygmund decomposition, quantitative covering theorems and the K-functional for the couple (L q ,W ˙ p k ), Algebra Anal., Volume 8 (1996) no. 4, pp. 110-160 English transl. in St. Petersbg. Math. J. 8 (1997), no. 4, p. 617-649

[22] Natan Kruglyak; Evgeny A. Kuznetsov Sharp integral estimates for the fractional maximal function and interpolation, Ark. Mat., Volume 44 (2006) no. 2, pp. 309-326 | Article | MR 2292724 | Zbl 1156.42308

[23] Andrei K. Lerner A simple proof of the A 2 conjecture, Int. Math. Res. Not., Volume 2013 (2013) no. 14, pp. 3159-3170 | Article | MR 3085756 | Zbl 1318.42018

[24] Andrei K. Lerner; Fedor Nazarov Intuitive dyadic calculus: the basics, Expo. Math., Volume 37 (2019) no. 3, pp. 225-265 | Article | MR 4007575 | Zbl 1440.42062

[25] Mario Milman Marcinkiewicz spaces, Garsia–Rodemich spaces and the scale of John–Nirenberg self improving inequalities, Ann. Acad. Sci. Fenn., Math., Volume 41 (2016) no. 1, pp. 491-501 | Article | MR 3467723 | Zbl 1335.42024

[26] Jürgen Moser A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., Volume 13 (1960), pp. 457-468 | Article | MR 170091 | Zbl 0111.09301

[27] Zeev Nehari On bounded bilinear forms, Ann. Math., Volume 65 (1957), pp. 153-162 | Article | MR 82945 | Zbl 0077.10605

[28] Jaak Peetre New Thoughts on Besov Spaces, Duke University Mathematics Series, Duke University, 1976 | Zbl 0356.46038

[29] Frigyes Riesz Untersuchungen über systeme integrierbarer funktionen, Math. Ann., Volume 69 (1910), pp. 449-497 | Article | Zbl 41.0383.01

[30] Guido Stampacchia (p,λ) -spaces and interpolation, Commun. Pure Appl. Math., Volume 17 (1964), pp. 293-306 | Article

[31] Guido tampacchia The spaces L (p,λ) ,N (p,λ) and interpolation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1965), pp. 443-462

[32] Hans Triebel Theory of Function Spaces II, Monographs in Mathematics, 84, Birkhäuser, 1992 | MR 1163193 | Zbl 0763.46025

[33] Nicholas T. Varopoulos Hardy–Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260 | Article | MR 803094 | Zbl 0608.47047