A generalization of the theory of Y. Brudnyi [7], and A. and Y. Brudnyi [5, 6], is presented. Our construction connects Brudnyi’s theory, which relies on local polynomial approximation, with new results on sparse domination. In particular, we find an analogue of the maximal theorem for the fractional maximal function, solving a problem proposed by Kruglyak–Kuznetsov. Our spaces shed light on the structure of the John–Nirenberg spaces. We show that (sparse John–Nirenberg space) coincides with This characterization yields the John–Nirenberg inequality by extrapolation and is useful in the theory of commutators.
Accepted:
Published online:
Óscar Domínguez 1; Mario Milman 2
@article{CRMATH_2021__359_8_1059_0, author = {\'Oscar Dom{\'\i}nguez and Mario Milman}, title = {Sparse {Brudnyi} and {John{\textendash}Nirenberg} {Spaces}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1059--1069}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {8}, year = {2021}, doi = {10.5802/crmath.252}, language = {en}, }
Óscar Domínguez; Mario Milman. Sparse Brudnyi and John–Nirenberg Spaces. Comptes Rendus. Mathématique, Volume 359 (2021) no. 8, pp. 1059-1069. doi : 10.5802/crmath.252. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.252/
[1] Off-diagonal estimates for bi-commutators (2020) | arXiv
[2] Garsia–Rodemich spaces: Local maximal functions and interpolation, Stud. Math., Volume 255 (2020) no. 1, pp. 1-26 | DOI | MR | Zbl
[3] Commutators of the maximal and sharp functions, Proc. Am. Math. Soc., Volume 128 (2000), pp. 65-74 | MR | Zbl
[4] Weak- and , Ann. Math., Volume 113 (1981), pp. 601-611 | DOI | MR | Zbl
[5] Multivariate bounded variation functions of Jordan–Wiener type, J. Approx. Theory, Volume 251 (2020), 105346, 70 pages | MR | Zbl
[6] On the Banach structure of multivariate spaces, Diss. Math., Volume 548 (2020), pp. 1-52 | MR | Zbl
[7] Spaces defined by means of local approximations, Tr. Mosk. Mat. O.-va, Volume 24 (1971), pp. 69-132 English transl. in Trans. Mosc.. Math. Soc. 24 (1971), p. 73-139 | Zbl
[8] On the existence of certain singular integrals, Acta Math., Volume 88 (1952), pp. 85-139 | DOI | MR | Zbl
[9] Su un teorema di interpolazione di G. Stampacchia, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (1966), pp. 649-652 | Numdam | MR | Zbl
[10] Factorization theorems for Hardy spaces in several variables, Ann. Math., Volume 103 (1976), pp. 611-635 | DOI | MR | Zbl
[11] The space : nontriviality and duality, J. Funct. Anal., Volume 275 (2018) no. 3, pp. 577-603 | DOI | Zbl
[12]
(in preparation)[13] Characterization of bounded mean oscillation, Bull. Am. Math. Soc., Volume 77 (1970), pp. 587-588 | DOI | MR | Zbl
[14] spaces of several variables, Acta Math., Volume 129 (1972), pp. 137-193 | DOI | Zbl
[15] A discrete transform and decompositions of distribution spaces, J. Funct. Anal., Volume 93 (1990) no. 1, pp. 34-170 | DOI | MR | Zbl
[16] Martingale Inequalities: Seminar Notes on Recent Progress, Mathematics Lecture Notes Series, W. A. Benjamin, Inc., 1973 | Zbl
[17] Monotonicity of certain functionals under rearrangements, Ann. Inst. Fourier, Volume 24 (1974) no. 2, pp. 67-116 | DOI | MR | Zbl
[18] The -to- boundedness of commutators with applications to the Jacobian operator (2021) | arXiv
[19] Mean oscillation and commutators of singular integral operators, Ark. Mat., Volume 16 (1978), pp. 263-270 | DOI | MR | Zbl
[20] On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl
[21] Smooth analogues of the Calderón–Zygmund decomposition, quantitative covering theorems and the -functional for the couple , Algebra Anal., Volume 8 (1996) no. 4, pp. 110-160 English transl. in St. Petersbg. Math. J. 8 (1997), no. 4, p. 617-649
[22] Sharp integral estimates for the fractional maximal function and interpolation, Ark. Mat., Volume 44 (2006) no. 2, pp. 309-326 | DOI | MR | Zbl
[23] A simple proof of the conjecture, Int. Math. Res. Not., Volume 2013 (2013) no. 14, pp. 3159-3170 | DOI | MR | Zbl
[24] Intuitive dyadic calculus: the basics, Expo. Math., Volume 37 (2019) no. 3, pp. 225-265 | DOI | MR | Zbl
[25] Marcinkiewicz spaces, Garsia–Rodemich spaces and the scale of John–Nirenberg self improving inequalities, Ann. Acad. Sci. Fenn., Math., Volume 41 (2016) no. 1, pp. 491-501 | DOI | MR | Zbl
[26] A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Commun. Pure Appl. Math., Volume 13 (1960), pp. 457-468 | DOI | MR | Zbl
[27] On bounded bilinear forms, Ann. Math., Volume 65 (1957), pp. 153-162 | DOI | MR | Zbl
[28] New Thoughts on Besov Spaces, Duke University Mathematics Series, Duke University, 1976 | Zbl
[29] Untersuchungen über systeme integrierbarer funktionen, Math. Ann., Volume 69 (1910), pp. 449-497 | DOI | Zbl
[30] spaces and interpolation, Commun. Pure Appl. Math., Volume 17 (1964), pp. 293-306 | DOI
[31] The spaces and interpolation, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 19 (1965), pp. 443-462
[32] Theory of Function Spaces II, Monographs in Mathematics, 84, Birkhäuser, 1992 | MR | Zbl
[33] Hardy–Littlewood theory for semigroups, J. Funct. Anal., Volume 63 (1985), pp. 240-260 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy