We combine continuous -Hermite Askey polynomials with new orthogonal polynomials introduced by Ismail and Zhang as -analogs for complex Hermite polynomials to construct a new set of coherent states depending on a nonnegative integer parameter . Our construction leads to a new -deformation of the -true-polyanalytic Bargmann transform on the complex plane. In the analytic case , the obtained coherent states transform can be associated with the Arïk-Coon oscillator for . These result may be used to introduce a -deformed Ginibre-type point process.
Accepted:
Published online:
Othmane El Moize 1; Zouhaïr Mouayn 2, 3
@article{CRMATH_2021__359_10_1295_0, author = {Othmane El Moize and Zouha{\"\i}r Mouayn}, title = {A $q$-deformation of true-polyanalytic {Bargmann} transforms when $q^{-1}>1$}, journal = {Comptes Rendus. Math\'ematique}, pages = {1295--1305}, publisher = {Acad\'emie des sciences, Paris}, volume = {359}, number = {10}, year = {2021}, doi = {10.5802/crmath.284}, language = {en}, }
TY - JOUR AU - Othmane El Moize AU - Zouhaïr Mouayn TI - A $q$-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$ JO - Comptes Rendus. Mathématique PY - 2021 SP - 1295 EP - 1305 VL - 359 IS - 10 PB - Académie des sciences, Paris DO - 10.5802/crmath.284 LA - en ID - CRMATH_2021__359_10_1295_0 ER -
Othmane El Moize; Zouhaïr Mouayn. A $q$-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1295-1305. doi : 10.5802/crmath.284. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.284/
[1] Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions, Appl. Comput. Harmon. Anal., Volume 29 (2010) no. 3, pp. 287-302 | DOI | MR | Zbl
[2] Discrete coherent states for higher Landau levels, Ann. Phys., Volume 363 (2015), pp. 337-353 | DOI | MR | Zbl
[3] The Weyl–Heisenberg ensemble: hyperuniformity and higher Landau levels, J. Stat. Mech. Theory Exp., Volume 2017 (2017) no. 4, 043103, 16 pages | MR | Zbl
[4] Function spaces of polyanalytic functions, Harmonic and complex analysis and its applications (Trends in Mathematics), Birkhäuser, 2014, pp. 1-38 | Zbl
[5] Coherent states, Wavelets and their Generalizations, Theoretical and Mathematical Physics, Springer, 2014
[6] The finite Heine transformation, Combinatorial number theory, Walter de Gruyter, 2009, pp. 1-6 | Zbl
[7] Une -déformation de la transformation de Bargmann vraie-polyanalytique, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 8, pp. 903-910 | DOI | Zbl
[8] Continuous -Hermite polynomials when . -Series and Partitions, -Series and partitions (IMA, Minneapolis, 1988) (The IMA Volumes in Mathematics and its Applications), Volume 18, Springer, 1989, pp. 151-158 | DOI | Zbl
[9] Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 7, pp. 707-712 | DOI | Zbl
[10] Orthogonality of Askey–Wilson polynomials with respect to a measure of Ramanujan type, Theor. Math. Phys., Volume 102 (1995) no. 1, pp. 23-28 translated from Teoret. Mat. Fiz 104 (1995), no. 1, p. 32-39 | DOI | Zbl
[11] Fourier–Gauss transforms of the Al-Salam-Chihara polynomials, J. Phys. A, Math. Gen., Volume 30 (1997) no. 19, pp. 655-661 | DOI | MR | Zbl
[12] Fourier–Gauss transforms of the continuous big -Hermite polynomials, J. Phys. A, Math. Gen., Volume 30 (1997) no. 16, pp. 559-565 | DOI | MR | Zbl
[13] On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 174-187 | MR
[14] Arik–Coon oscillator with in the framework of unified -deformation, J. Phys. A, Math. Theor., Volume 43 (2010) no. 62, 305204, 9 pages | MR
[15] Nonclassical states in quantum optics: a ‘squeezed’ review of the first 75 years, J. Opt. B: Quantum Semiclassical Opt., Volume 4 (2002), pp. 1-33 | DOI | MR
[16] Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989, x+277 pages | DOI
[17] Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, 2004 | DOI
[18] Bounds on the Segal-Bargmann transform of functions, J. Fourier Anal. Appl., Volume 7 (2001) no. 6, pp. 553-569 | DOI | MR | Zbl
[19] On some Orthogonal -polynomials, Trans. Am. Math. Soc., Volume 369 (2017) no. 10, pp. 6779-6821 | DOI | MR | Zbl
[20] Complex multiple Wiener integral, Jap. J. Math., Volume 22 (1952), pp. 63-86 | MR | Zbl
[21] Transformation functions in the complex domain, Prog. Theor. Phys., Volume 6 (1951), pp. 524-528 | DOI | MR
[22] The Askey-scheme of hypergeometric orthogonal polynomials and its -analogues, 1998 (Delft University of Technology)
[23] -Sobolev orthogonality of the -Laguerre polynomials for positive integers , J. Korean Math. Soc., Volume 48 (2011) no. 5, pp. 913-926 | DOI | MR | Zbl
[24] Coherent state transforms attached to generalized Bargmann spaces on the complex plane, Math. Nachr., Volume 284 (2011) no. 14-15, pp. 1948-1954 | DOI | MR | Zbl
[25] Maths-type -deformed coherent states for , Phys. Lett., A, Volume 33 (2003) no. 1-2, pp. 29-36 | DOI | Zbl
[26] Ginibre-type point processes and their asymptotic behavior, J. Math. Soc. Japan, Volume 67 (2015) no. 2, pp. 763-787 | MR | Zbl
[27] Poly-Fock spaces, Differential operators and related topics (Operator Theory: Advances and Applications), Volume 117, Birkhäuser, 2000, pp. 371-386 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy