Comptes Rendus
Mathematical physics
A q-deformation of true-polyanalytic Bargmann transforms when q -1 >1
Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1295-1305.

We combine continuous q -1 -Hermite Askey polynomials with new 2D orthogonal polynomials introduced by Ismail and Zhang as q-analogs for complex Hermite polynomials to construct a new set of coherent states depending on a nonnegative integer parameter m. Our construction leads to a new q-deformation of the m-true-polyanalytic Bargmann transform on the complex plane. In the analytic case m=0, the obtained coherent states transform can be associated with the Arïk-Coon oscillator for q =q -1 >1. These result may be used to introduce a q-deformed Ginibre-type point process.

Received:
Accepted:
Published online:
DOI: 10.5802/crmath.284

Othmane El Moize 1; Zouhaïr Mouayn 2, 3

1 Department of Mathematics, Faculty of Sciences, Ibn Tofaïl University, P.O. Box. 133, Kénitra, Morocco
2 Department of Mathematics, Faculty of Sciences and Technics (M’Ghila), Sultan Moulay Slimane University, P.O. Box. 523, Béni Mellal, Morocco
3 Department of Mathematics, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2021__359_10_1295_0,
     author = {Othmane El Moize and Zouha{\"\i}r Mouayn},
     title = {A $q$-deformation of true-polyanalytic {Bargmann} transforms when $q^{-1}>1$},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1295--1305},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {359},
     number = {10},
     year = {2021},
     doi = {10.5802/crmath.284},
     language = {en},
}
TY  - JOUR
AU  - Othmane El Moize
AU  - Zouhaïr Mouayn
TI  - A $q$-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$
JO  - Comptes Rendus. Mathématique
PY  - 2021
SP  - 1295
EP  - 1305
VL  - 359
IS  - 10
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.284
LA  - en
ID  - CRMATH_2021__359_10_1295_0
ER  - 
%0 Journal Article
%A Othmane El Moize
%A Zouhaïr Mouayn
%T A $q$-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$
%J Comptes Rendus. Mathématique
%D 2021
%P 1295-1305
%V 359
%N 10
%I Académie des sciences, Paris
%R 10.5802/crmath.284
%G en
%F CRMATH_2021__359_10_1295_0
Othmane El Moize; Zouhaïr Mouayn. A $q$-deformation of true-polyanalytic Bargmann transforms when $q^{-1}>1$. Comptes Rendus. Mathématique, Volume 359 (2021) no. 10, pp. 1295-1305. doi : 10.5802/crmath.284. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.284/

[1] Luís D. Abreu Sampling and interpolation in Bargmann-Fock spaces of polyanalytic functions, Appl. Comput. Harmon. Anal., Volume 29 (2010) no. 3, pp. 287-302 | DOI | MR | Zbl

[2] Luís D. Abreu; Péter Balázs; Maurice de Gosson; Zouhaïr Mouayn Discrete coherent states for higher Landau levels, Ann. Phys., Volume 363 (2015), pp. 337-353 | DOI | MR | Zbl

[3] Luís D. Abreu; João M. Pereira; José L. Romero; Sal Torquato The Weyl–Heisenberg ensemble: hyperuniformity and higher Landau levels, J. Stat. Mech. Theory Exp., Volume 2017 (2017) no. 4, 043103, 16 pages | MR | Zbl

[4] Luis Daniel Abreu; Hans G. Feichtinger Function spaces of polyanalytic functions, Harmonic and complex analysis and its applications (Trends in Mathematics), Birkhäuser, 2014, pp. 1-38 | Zbl

[5] Syed Twareque Ali; Jean-Pierre Antoine; Jean-Pierre Gazeau Coherent states, Wavelets and their Generalizations, Theoretical and Mathematical Physics, Springer, 2014

[6] George E. Andrews The finite Heine transformation, Combinatorial number theory, Walter de Gruyter, 2009, pp. 1-6 | Zbl

[7] Sama Arjika; Othmane El Moize; Zouhaïr Mouayn Une q-déformation de la transformation de Bargmann vraie-polyanalytique, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 8, pp. 903-910 | DOI | Zbl

[8] Richard Askey Continuous q-Hermite polynomials when q>1. q-Series and Partitions, q-Series and partitions (IMA, Minneapolis, 1988) (The IMA Volumes in Mathematics and its Applications), Volume 18, Springer, 1989, pp. 151-158 | DOI | Zbl

[9] Noureddine Askour; Ahmed Intissar; Zouhaïr Mouayn Espaces de Bargmann généralisés et formules explicites pour leurs noyaux reproduisants, C. R. Math. Acad. Sci. Paris, Volume 325 (1997) no. 7, pp. 707-712 | DOI | Zbl

[10] Natig M. Atakishiev Orthogonality of Askey–Wilson polynomials with respect to a measure of Ramanujan type, Theor. Math. Phys., Volume 102 (1995) no. 1, pp. 23-28 translated from Teoret. Mat. Fiz 104 (1995), no. 1, p. 32-39 | DOI | Zbl

[11] Mesuma K. Atakishiyeva; Natig M. Atakishiev Fourier–Gauss transforms of the Al-Salam-Chihara polynomials, J. Phys. A, Math. Gen., Volume 30 (1997) no. 19, pp. 655-661 | DOI | MR | Zbl

[12] Mesuma K. Atakishiyeva; Natig M. Atakishiev Fourier–Gauss transforms of the continuous big q-Hermite polynomials, J. Phys. A, Math. Gen., Volume 30 (1997) no. 16, pp. 559-565 | DOI | MR | Zbl

[13] Valentine Bargmann On a Hilbert space of analytic functions and an associated integral transform, Commun. Pure Appl. Math., Volume 14 (1961), pp. 174-187 | MR

[14] Ivan M. Burban Arik–Coon oscillator with q>1 in the framework of unified (q;α,β,γ;ν)-deformation, J. Phys. A, Math. Theor., Volume 43 (2010) no. 62, 305204, 9 pages | MR

[15] Victor V. Dodonov Nonclassical states in quantum optics: a ‘squeezed’ review of the first 75 years, J. Opt. B: Quantum Semiclassical Opt., Volume 4 (2002), pp. 1-33 | DOI | MR

[16] Gerald B. Folland Harmonic analysis in phase space, Annals of Mathematics Studies, 122, Princeton University Press, 1989, x+277 pages | DOI

[17] George Gasper; Mizan Rahman Basic hypergeometric series, Encyclopedia of Mathematics and Its Applications, 96, Cambridge University Press, 2004 | DOI

[18] Brian C. Hall Bounds on the Segal-Bargmann transform of L p functions, J. Fourier Anal. Appl., Volume 7 (2001) no. 6, pp. 553-569 | DOI | MR | Zbl

[19] Mourad E. H. Ismail; Ruiming Zhang On some 2D Orthogonal q-polynomials, Trans. Am. Math. Soc., Volume 369 (2017) no. 10, pp. 6779-6821 | DOI | MR | Zbl

[20] Kiyosi Itô Complex multiple Wiener integral, Jap. J. Math., Volume 22 (1952), pp. 63-86 | MR | Zbl

[21] Giiti Iwata Transformation functions in the complex domain, Prog. Theor. Phys., Volume 6 (1951), pp. 524-528 | DOI | MR

[22] Roelof Koekoek; René F. Swarttouw The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogues, 1998 (Delft University of Technology)

[23] Samuel G. Moreno; Esther M. García-Caballero q-Sobolev orthogonality of the q-Laguerre polynomials {L n (-N) (·,q)} n=0 for positive integers N, J. Korean Math. Soc., Volume 48 (2011) no. 5, pp. 913-926 | DOI | MR | Zbl

[24] Zouhaïr Mouayn Coherent state transforms attached to generalized Bargmann spaces on the complex plane, Math. Nachr., Volume 284 (2011) no. 14-15, pp. 1948-1954 | DOI | MR | Zbl

[25] Christiane Quesne; Karol A. Penson; Volodymyr M. Tkachuk Maths-type q-deformed coherent states for q>1, Phys. Lett., A, Volume 33 (2003) no. 1-2, pp. 29-36 | DOI | Zbl

[26] Tomoyuki Shirai Ginibre-type point processes and their asymptotic behavior, J. Math. Soc. Japan, Volume 67 (2015) no. 2, pp. 763-787 | MR | Zbl

[27] Nikolai L. Vasilevski Poly-Fock spaces, Differential operators and related topics (Operator Theory: Advances and Applications), Volume 117, Birkhäuser, 2000, pp. 371-386 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy