Comptes Rendus
Théorie du contrôle
Reachable states for the distributed control of the heat equation
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 627-639.

We are concerned with the determination of the reachable states for the distributed control of the heat equation on an interval. We consider either periodic boundary conditions or homogeneous Dirichlet boundary conditions. We prove that for a L 2 distributed control, the reachable states are in the Sobolev space H 1 and that they have complex analytic extensions on squares whose horizontal diagonals are regions where no control is applied.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.310
Classification : 35K40, 93B05

Mo Chen 1 ; Lionel Rosier 2

1 School of Mathematics and Statistics, Center for Mathematics and Interdisciplinary Sciences, Northeast Normal University, Changchun, 130024, P. R. China
2 Université du Littoral Côte d’Opale, Laboratoire de Mathématiques Pures et Appliquées J. Liouville, BP 699, F-62228 Calais, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G6_627_0,
     author = {Mo Chen and Lionel Rosier},
     title = {Reachable states for the distributed control of the heat equation},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {627--639},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.310},
     zbl = {07547262},
     language = {en},
}
TY  - JOUR
AU  - Mo Chen
AU  - Lionel Rosier
TI  - Reachable states for the distributed control of the heat equation
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 627
EP  - 639
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.310
LA  - en
ID  - CRMATH_2022__360_G6_627_0
ER  - 
%0 Journal Article
%A Mo Chen
%A Lionel Rosier
%T Reachable states for the distributed control of the heat equation
%J Comptes Rendus. Mathématique
%D 2022
%P 627-639
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.310
%G en
%F CRMATH_2022__360_G6_627_0
Mo Chen; Lionel Rosier. Reachable states for the distributed control of the heat equation. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 627-639. doi : 10.5802/crmath.310. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.310/

[1] Mo Chen; Lionel Rosier Exact controllability of the linear Zakharov–Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 25 (2020) no. 10, pp. 3889-3916 | MR | Zbl

[2] Jérémi Dardé; Sylvain Ervedoza On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., Volume 56 (2018) no. 3, pp. 1692-1715 | DOI | MR | Zbl

[3] Lawrence C. Evans Partial differential equations, Graduate Studies in Mathematics, 19, American Mathematical Society, 1998

[4] Hector O. Fattorini; Donald L. Russell Exact controllability theorems for linear parabolic equations in one space dimension, Arch. Ration. Mech. Anal., Volume 43 (1971) no. 4, pp. 272-292 | DOI | MR | Zbl

[5] Andreĭ V. Fursikov; Oleg Yu. Imanuvilov Controllability of evolution equations, Lecture Notes Series, Seoul, 34, Seoul National University, 1996

[6] Andreas Hartmann; Karim Kellay; Marius Tucsnak From the reachable space of the heat equation to Hilbert spaces of holomorphic functions, J. Eur. Math. Soc., Volume 22 (2020) no. 10, pp. 3417-3440 | DOI | MR | Zbl

[7] Andreas Hartmann; Marcu-Antone Orsoni Separation of singularities for the Bergman space and application to control theory, J. Math. Pures Appl., Volume 150 (2021), pp. 181-201 | DOI | MR | Zbl

[8] Camille Laurent; Lionel Rosier Exact controllability of semilinear heat equations in spaces of analytic functions, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 37 (2020) no. 4, pp. 1047-1073 | DOI | MR | Zbl

[9] Gilles Lebeau; Luc Robbiano Contrôle exact de l’équation de la chaleur, Commun. Partial Differ. Equations, Volume 20 (1995) no. 1, pp. 1-2 | Zbl

[10] Donald A. Lutz; Megumu Miyake; Reinhard Schäfke On the Borel summability of divergent solutions of the heat equation, Nagoya Math. J., Volume 154 (1999), pp. 1-29 | DOI | MR

[11] Philippe Martin; Ivonne Rivas; Lionel Rosier; Pierre Rouchon Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., Volume 57 (2019) no. 4, pp. 2467-2486 | DOI | MR | Zbl

[12] Philippe Martin; Lionel Rosier; Pierre Rouchon On the reachable states for the boundary control of the heat equation, AMRX, Appl. Math. Res. Express, Volume 2016 (2016) no. 2, pp. 181-216 | DOI | MR | Zbl

[13] Marcu-Antone Orsoni Reachable states and holomorphic function spaces for the 1-D heat equation, J. Funct. Anal., Volume 280 (2021) no. 7, 108852, 18 pages | MR | Zbl

[14] Alexander Strohmaier; Alden Waters Analytic properties of heat equation solutions and reachable sets (2006) (https://arxiv.org/abs/2006.05762v1)

Cité par Sources :

Commentaires - Politique