Comptes Rendus
Théorie des nombres
p-adic non-commutative analytic subgroup theorem
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 933-936.

In this paper, we formulate and prove the so-called p-adic non-commutative analytic subgroup theorem. This result is seen as the p-adic analogue of a recent theorem given by Yafaev in [11].

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.325
Classification : 14L10, 22E35, 11F85, 11J81

Duc Hiep Pham 1

1 University of Education, Vietnam National University, Hanoi, 144 Xuan Thuy, Cau Giay, Hanoi, Vietnam
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G8_933_0,
     author = {Duc Hiep Pham},
     title = {$p$-adic non-commutative analytic subgroup theorem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {933--936},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.325},
     language = {en},
}
TY  - JOUR
AU  - Duc Hiep Pham
TI  - $p$-adic non-commutative analytic subgroup theorem
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 933
EP  - 936
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.325
LA  - en
ID  - CRMATH_2022__360_G8_933_0
ER  - 
%0 Journal Article
%A Duc Hiep Pham
%T $p$-adic non-commutative analytic subgroup theorem
%J Comptes Rendus. Mathématique
%D 2022
%P 933-936
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.325
%G en
%F CRMATH_2022__360_G8_933_0
Duc Hiep Pham. $p$-adic non-commutative analytic subgroup theorem. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 933-936. doi : 10.5802/crmath.325. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.325/

[1] Alan Baker; Gisbert Wüstholz Logarithmic Forms and Diophantine Geometry, New Mathematical Monographs, 9, Cambridge University Press, 2007 | Zbl

[2] Nicolas Bourbaki Elements of Mathematics. Lie groups and Lie algebras. Part I: Chapters 1-3. English translantion, Actualités Scientifiques et Industrielles, Addison-Wesley Publishing Group, 1975

[3] Clemens Fuchs; Duc Hiep Pham The p-adic analytic subgroup theorem revisited, p-Adic Numbers Ultrametric Anal. Appl., Volume 7 (2015) no. 2, pp. 143-156

[4] James S. Milne Algebraic Groups. The theory of group schemes of finite type over a field, Cambridge Studies in Advanced Mathematics, 170, Cambridge University Press, 2017

[5] Peter Schneider p-adic Lie groups, Grundlehren der Mathematischen Wissenschaften, Springer, 2011

[6] Paula Tretkoff Periods and Special Functions in Transcendence, Advanced Textbooks in Mathematics, World Scientific, 2017

[7] Gisbert Wüstholz Some remarks on a conjecture of Waldschmidt, Approximations diophantiennes et nombres transcendants (Progress in Mathematics), Volume 31, Birkhäuser, 1983, pp. 329-336

[8] Gisbert Wüstholz Multiplicity estimates on group varieties, Ann. Math., Volume 129 (1989), pp. 471-500

[9] Gisbert Wüstholz Algebraische Punkte auf Analytischen Untergruppen algebraischer Gruppen, Ann. Math., Volume 129 (1989), pp. 501-517

[10] Gisbert Wüstholz Elliptic and abelian period spaces, Acta Arith., Volume 198 (2021), pp. 329-357

[11] Andrei Yafaev Non-commutative analytic subgroup theorem, J. Number Theory, Volume 230 (2022), pp. 233-237

Cité par Sources :

Commentaires - Politique