Comptes Rendus
Statistiques
A unified approach for covariance matrix estimation under Stein loss
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1093-1098.

Dans cet article, nous abordons le problème de l’estimation d’une matrice de covariance d’une distribution gaussienne multivariée, du point de vue de la théorie de la décision, par rapport à une fonction de coût de type Stein. Nous étudions dans une approche unifiée le cas où la matrice de covariance est inversible et le cas où elle n’est pas inversible.

In this paper, we address the problem of estimating a covariance matrix of a multivariate Gaussian distribution, from a decision theoretic point of view, relative to a Stein type loss function. We investigate the case where the covariance matrix is invertible and the case when it is non–invertible in a unified approach.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.356
Classification : 62H12, 62F10, 62C99

Anis M. Haddouche 1 ; Wei Lu 2

1 INSA Rouen, Normandie Univ, UNIROUEN, UNIHAVRE, LITIS and LMI, avenue de l’Université, BP 8, Saint-Étienne-du-Rouvray, 76801, France
2 INSA Rouen, Normandie Univ, UNIROUEN, UNIHAVRE, LMI, avenue de l’Université, BP 8, Saint-Étienne-du-Rouvray, 76801, France
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G10_1093_0,
     author = {Anis  M. Haddouche and Wei Lu},
     title = {A unified approach for covariance matrix estimation under {Stein} loss},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1093--1098},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.356},
     language = {en},
}
TY  - JOUR
AU  - Anis  M. Haddouche
AU  - Wei Lu
TI  - A unified approach for covariance matrix estimation under Stein loss
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1093
EP  - 1098
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.356
LA  - en
ID  - CRMATH_2022__360_G10_1093_0
ER  - 
%0 Journal Article
%A Anis  M. Haddouche
%A Wei Lu
%T A unified approach for covariance matrix estimation under Stein loss
%J Comptes Rendus. Mathématique
%D 2022
%P 1093-1098
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.356
%G en
%F CRMATH_2022__360_G10_1093_0
Anis  M. Haddouche; Wei Lu. A unified approach for covariance matrix estimation under Stein loss. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1093-1098. doi : 10.5802/crmath.356. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.356/

[1] Didier Chételat; Martin T. Wells Improved second order estimation in the singular multivariate normal model, J. Multivariate Anal., Volume 147 (2016), pp. 1-19 | DOI | MR | Zbl

[2] Dipak K. Dey; Cidambi Srinivasan Estimation of a covariance matrix under Stein’s loss, Ann. Stat., Volume 13 (1985), pp. 1581-1591 | DOI | MR | Zbl

[3] Dominique Fourdrinier; Anis M. Haddouche; Fatiha Mezoued Covariance matrix estimation under data-based loss, Stat. Probab. Lett., Volume 177 (2021), 109160 | DOI | MR | Zbl

[4] Anis M. Haddouche; Dominique Fourdrinier; Fatiha Mezoued Scale matrix estimation of an elliptically symmetric distribution in high and low dimensions, J. Multivariate Anal., Volume 181 (2021), 104680 | DOI | MR | Zbl

[5] L. R. Haff Empirical Bayes estimation of the multivariate normal covariance matrix, Ann. Stat., Volume 8 (1980) no. 3, pp. 586-597 | DOI | MR | Zbl

[6] Yoshihiko Konno Shrinkage estimators for large covariance matrices in multivariate real and complex normal distributions under an invariant quadratic loss, J. Multivariate Anal., Volume 100 (2009) no. 10, pp. 2237-2253 | DOI | MR | Zbl

[7] Tatsuya Kubokawa; Muni S. Srivastava Estimation of the precision matrix of a singular Wishart distribution and its application in high-dimensional data, J. Multivariate Anal., Volume 99 (2008) no. 9, pp. 1906-1928 | DOI | MR | Zbl

[8] Olivier Ledoit; Michael Wolf A well-conditioned estimator for large-dimensional covariance matrices, J. Multivariate Anal., Volume 88 (2004) no. 2, pp. 365-411 | DOI | MR | Zbl

[9] Muni S. Srivastava Singular Wishart and multivariate Beta distributions, Ann. Stat., Volume 31 (2003) no. 5, pp. 1537-1560 | DOI | MR | Zbl

[10] Charles M. Stein Estimation of a covariance matrix, Rietz Lecture, 39th Annual Meeting of the IMS, Atlanta, GA, 1975 (1975)

[11] Charles M. Stein Lectures on the theory of estimation of many parameters, J. Sov. Math., Volume 34 (1986) no. 1, pp. 1373-1403 | DOI | Zbl

[12] Akimichi Takemura An orthogonally invariant minimax estimator of the covariance matrix of a multivariate normal population, Tsukuba J. Math., Volume 8 (1984), pp. 367-376 | DOI | MR | Zbl

[13] Hisayuki Tsukuma Estimation of a high-dimensional covariance matrix with the Stein Loss, J. Multivariate Anal., Volume 148 (2016), pp. 1-17 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique