Comptes Rendus
Combinatorics, Number theory
On the minimum size of subset and subsequence sums in integers
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1099-1111.

Let 𝒜 be a sequence of rk terms which is made up of k distinct integers each appearing exactly r times in 𝒜. The sum of all terms of a subsequence of 𝒜 is called a subsequence sum of 𝒜. For a nonnegative integer αrk, let Σ α (𝒜) be the set of all subsequence sums of 𝒜 that correspond to the subsequences of length α or more. When r=1, we call the subsequence sums as subset sums and we write Σ α (A) for Σ α (𝒜). In this article, using some simple combinatorial arguments, we establish optimal lower bounds for the size of Σ α (A) and Σ α (𝒜). As special cases, we also obtain some already known results in this study.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.361
Classification: 11B75, 11B13, 11B30

Jagannath Bhanja 1; Ram Krishna Pandey 2

1 Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj-211019, India
2 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2022__360_G10_1099_0,
     author = {Jagannath Bhanja and Ram Krishna Pandey},
     title = {On the minimum size of subset and subsequence sums in integers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1099--1111},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.361},
     language = {en},
}
TY  - JOUR
AU  - Jagannath Bhanja
AU  - Ram Krishna Pandey
TI  - On the minimum size of subset and subsequence sums in integers
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1099
EP  - 1111
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.361
LA  - en
ID  - CRMATH_2022__360_G10_1099_0
ER  - 
%0 Journal Article
%A Jagannath Bhanja
%A Ram Krishna Pandey
%T On the minimum size of subset and subsequence sums in integers
%J Comptes Rendus. Mathématique
%D 2022
%P 1099-1111
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.361
%G en
%F CRMATH_2022__360_G10_1099_0
Jagannath Bhanja; Ram Krishna Pandey. On the minimum size of subset and subsequence sums in integers. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1099-1111. doi : 10.5802/crmath.361. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.361/

[1] Éric Balandraud An addition theorem and maximal zero-sum free sets in /p, Isr. J. Math., Volume 188 (2012), pp. 405-429 | DOI | MR | Zbl

[2] Éric Balandraud Addition theorems in 𝔽 p via the polynomial method (2017) (https://arxiv.org/abs/1702.06419)

[3] Éric Balandraud; Benjamin Girard; Simon Griffiths; Yahya O. Hamidoune Subset sums in abelian groups, Eur. J. Comb., Volume 34 (2013) no. 8, pp. 1269-1286 | DOI | MR | Zbl

[4] Jagannath Bhanja A note on sumsets and restricted sumsets, J. Integer Seq., Volume 24 (2021) no. 4, 21.4.2, 9 pages | MR | Zbl

[5] Jagannath Bhanja; Ram K. Pandey Inverse problems for certain subsequence sums in integers, Discrete Math., Volume 343 (2020) no. 12, 112148, 11 pages | MR | Zbl

[6] Matt DeVos; Luis Goddyn; Bojan Mohar A generalization of Kneser’s addition theorem, Adv. Math., Volume 220 (2009) no. 5, pp. 1531-1548 | DOI | MR | Zbl

[7] Matt DeVos; Luis Goddyn; Bojan Mohar; Robert Šámal A quadratic lower bound for subset sums, Acta Arith., Volume 129 (2007) no. 2, pp. 187-195 | DOI | MR | Zbl

[8] Pál Erdős; Hans A. Heilbronn On the addition of residue classes mod p, Acta Arith., Volume 9 (1964), pp. 149-159 | DOI | MR | Zbl

[9] Michael Freeze; Weidong Gao; Alfred Geroldinger The critical number of finite abelian groups, J. Number Theory, Volume 129 (2009) no. 11, pp. 2766-2777 | DOI | MR | Zbl

[10] Simon Griffiths Asymptotically tight bounds on subset sums, Acta Arith., Volume 138 (2009) no. 1, pp. 53-72 | DOI | MR | Zbl

[11] David J. Grynkiewicz On a partition analog of the Cauchy–Davenport theorem, Acta Math. Hung., Volume 107 (2005) no. 1-2, pp. 167-181 | MR | Zbl

[12] Yahya O. Hamidoune Adding distinct congruence classes, Comb. Probab. Comput., Volume 7 (1998) no. 1, pp. 81-87 | DOI | MR | Zbl

[13] Yahya O. Hamidoune; Anna S. Lladó; Oriol Serra On complete subsets of the cyclic group, J. Comb. Theory, Ser. A, Volume 115 (2008) no. 7, pp. 1279-1285 | DOI | MR | Zbl

[14] Xing-Wang Jiang; Ya-Li Li On the cardinality of subsequence sums, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 661-668 | DOI | MR | Zbl

[15] Raj K. Mistri; Ram K. Pandey A generalization of sumsets of set of integers, J. Number Theory, Volume 143 (2014), pp. 334-356 | DOI | MR | Zbl

[16] Raj K. Mistri; Ram K. Pandey The direct and inverse theorems on integer subsequence sums revisited, Integers, Volume 6 (2016), #A32, 8 pages | MR | Zbl

[17] Raj K. Mistri; Ram K. Pandey; Om Prakash Subsequence sums: direct and inverse problems, J. Number Theory, Volume 148 (2015), pp. 235-256 | DOI | MR | Zbl

[18] Melvyn B. Nathanson Inverse theorems for subset sums, Trans. Am. Math. Soc., Volume 347 (1995) no. 4, pp. 1409-1418 | DOI | MR | Zbl

[19] Melvyn B. Nathanson Additive Number Theory. Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, 165, Springer, 1996 | DOI | Zbl

[20] John E. Olson An addition theorem modulo p, J. Comb. Theory, Volume 5 (1968), pp. 45-52 | DOI | MR | Zbl

[21] Jiangtao Peng; Wanzhen Hui; Yuanlin Li; Fang Sun On subset sums of zero-sum free sets of abelian groups, Int. J. Number Theory, Volume 15 (2019) no. 3, pp. 645-654 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy