Comptes Rendus
Combinatoire, Théorie des nombres
On the minimum size of subset and subsequence sums in integers
Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1099-1111.

Let 𝒜 be a sequence of rk terms which is made up of k distinct integers each appearing exactly r times in 𝒜. The sum of all terms of a subsequence of 𝒜 is called a subsequence sum of 𝒜. For a nonnegative integer αrk, let Σα(𝒜) be the set of all subsequence sums of 𝒜 that correspond to the subsequences of length α or more. When r=1, we call the subsequence sums as subset sums and we write Σα(A) for Σα(𝒜). In this article, using some simple combinatorial arguments, we establish optimal lower bounds for the size of Σα(A) and Σα(𝒜). As special cases, we also obtain some already known results in this study.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.361
Classification : 11B75, 11B13, 11B30

Jagannath Bhanja 1 ; Ram Krishna Pandey 2

1 Harish-Chandra Research Institute, A CI of Homi Bhabha National Institute, Chhatnag Road, Jhunsi, Prayagraj-211019, India
2 Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee-247667, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2022__360_G10_1099_0,
     author = {Jagannath Bhanja and Ram Krishna Pandey},
     title = {On the minimum size of subset and subsequence sums in integers},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1099--1111},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {360},
     year = {2022},
     doi = {10.5802/crmath.361},
     language = {en},
}
TY  - JOUR
AU  - Jagannath Bhanja
AU  - Ram Krishna Pandey
TI  - On the minimum size of subset and subsequence sums in integers
JO  - Comptes Rendus. Mathématique
PY  - 2022
SP  - 1099
EP  - 1111
VL  - 360
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.361
LA  - en
ID  - CRMATH_2022__360_G10_1099_0
ER  - 
%0 Journal Article
%A Jagannath Bhanja
%A Ram Krishna Pandey
%T On the minimum size of subset and subsequence sums in integers
%J Comptes Rendus. Mathématique
%D 2022
%P 1099-1111
%V 360
%I Académie des sciences, Paris
%R 10.5802/crmath.361
%G en
%F CRMATH_2022__360_G10_1099_0
Jagannath Bhanja; Ram Krishna Pandey. On the minimum size of subset and subsequence sums in integers. Comptes Rendus. Mathématique, Volume 360 (2022), pp. 1099-1111. doi : 10.5802/crmath.361. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.361/

[1] Éric Balandraud An addition theorem and maximal zero-sum free sets in /p, Isr. J. Math., Volume 188 (2012), pp. 405-429 | DOI | MR | Zbl

[2] Éric Balandraud Addition theorems in 𝔽p via the polynomial method (2017) (https://arxiv.org/abs/1702.06419)

[3] Éric Balandraud; Benjamin Girard; Simon Griffiths; Yahya O. Hamidoune Subset sums in abelian groups, Eur. J. Comb., Volume 34 (2013) no. 8, pp. 1269-1286 | DOI | MR | Zbl

[4] Jagannath Bhanja A note on sumsets and restricted sumsets, J. Integer Seq., Volume 24 (2021) no. 4, 21.4.2, 9 pages | MR | Zbl

[5] Jagannath Bhanja; Ram K. Pandey Inverse problems for certain subsequence sums in integers, Discrete Math., Volume 343 (2020) no. 12, 112148, 11 pages | MR | Zbl

[6] Matt DeVos; Luis Goddyn; Bojan Mohar A generalization of Kneser’s addition theorem, Adv. Math., Volume 220 (2009) no. 5, pp. 1531-1548 | DOI | MR | Zbl

[7] Matt DeVos; Luis Goddyn; Bojan Mohar; Robert Šámal A quadratic lower bound for subset sums, Acta Arith., Volume 129 (2007) no. 2, pp. 187-195 | DOI | MR | Zbl

[8] Pál Erdős; Hans A. Heilbronn On the addition of residue classes mod p, Acta Arith., Volume 9 (1964), pp. 149-159 | DOI | MR | Zbl

[9] Michael Freeze; Weidong Gao; Alfred Geroldinger The critical number of finite abelian groups, J. Number Theory, Volume 129 (2009) no. 11, pp. 2766-2777 | DOI | MR | Zbl

[10] Simon Griffiths Asymptotically tight bounds on subset sums, Acta Arith., Volume 138 (2009) no. 1, pp. 53-72 | DOI | MR | Zbl

[11] David J. Grynkiewicz On a partition analog of the Cauchy–Davenport theorem, Acta Math. Hung., Volume 107 (2005) no. 1-2, pp. 167-181 | MR | Zbl

[12] Yahya O. Hamidoune Adding distinct congruence classes, Comb. Probab. Comput., Volume 7 (1998) no. 1, pp. 81-87 | DOI | MR | Zbl

[13] Yahya O. Hamidoune; Anna S. Lladó; Oriol Serra On complete subsets of the cyclic group, J. Comb. Theory, Ser. A, Volume 115 (2008) no. 7, pp. 1279-1285 | DOI | MR | Zbl

[14] Xing-Wang Jiang; Ya-Li Li On the cardinality of subsequence sums, Int. J. Number Theory, Volume 14 (2018) no. 3, pp. 661-668 | DOI | MR | Zbl

[15] Raj K. Mistri; Ram K. Pandey A generalization of sumsets of set of integers, J. Number Theory, Volume 143 (2014), pp. 334-356 | DOI | MR | Zbl

[16] Raj K. Mistri; Ram K. Pandey The direct and inverse theorems on integer subsequence sums revisited, Integers, Volume 6 (2016), #A32, 8 pages | MR | Zbl

[17] Raj K. Mistri; Ram K. Pandey; Om Prakash Subsequence sums: direct and inverse problems, J. Number Theory, Volume 148 (2015), pp. 235-256 | DOI | MR | Zbl

[18] Melvyn B. Nathanson Inverse theorems for subset sums, Trans. Am. Math. Soc., Volume 347 (1995) no. 4, pp. 1409-1418 | DOI | MR | Zbl

[19] Melvyn B. Nathanson Additive Number Theory. Inverse problems and the geometry of sumsets, Graduate Texts in Mathematics, 165, Springer, 1996 | DOI | Zbl

[20] John E. Olson An addition theorem modulo p, J. Comb. Theory, Volume 5 (1968), pp. 45-52 | DOI | MR | Zbl

[21] Jiangtao Peng; Wanzhen Hui; Yuanlin Li; Fang Sun On subset sums of zero-sum free sets of abelian groups, Int. J. Number Theory, Volume 15 (2019) no. 3, pp. 645-654 | DOI | MR | Zbl

Cité par Sources :

Commentaires - Politique