Comptes Rendus
Differential Geometry
Remarks on homogeneous solitons of the G 2 -Laplacian flow
Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 401-406.

We show the existence of expanding solitons of the G 2 -Laplacian flow on non-solvable Lie groups, and we give the first example of a steady soliton that is not an extremally Ricci pinched G 2 -structure.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.39

Anna Fino 1; Alberto Raffero 1

1 Dipartimento di Matematica “G. Peano”, Università degli Studi di Torino, Via Carlo Alberto 10, 10123 Torino, Italy
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2020__358_4_401_0,
     author = {Anna Fino and Alberto Raffero},
     title = {Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}${-Laplacian} flow},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {401--406},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {4},
     year = {2020},
     doi = {10.5802/crmath.39},
     language = {en},
}
TY  - JOUR
AU  - Anna Fino
AU  - Alberto Raffero
TI  - Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}$-Laplacian flow
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 401
EP  - 406
VL  - 358
IS  - 4
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.39
LA  - en
ID  - CRMATH_2020__358_4_401_0
ER  - 
%0 Journal Article
%A Anna Fino
%A Alberto Raffero
%T Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}$-Laplacian flow
%J Comptes Rendus. Mathématique
%D 2020
%P 401-406
%V 358
%N 4
%I Académie des sciences, Paris
%R 10.5802/crmath.39
%G en
%F CRMATH_2020__358_4_401_0
Anna Fino; Alberto Raffero. Remarks on homogeneous solitons of the $\protect \mathrm{G}_{2}$-Laplacian flow. Comptes Rendus. Mathématique, Volume 358 (2020) no. 4, pp. 401-406. doi : 10.5802/crmath.39. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.39/

[1] Gavin Ball Seven Dimensional Geometries with Special Torsion, Ph. D. Thesis, Duke University (2019)

[2] Robert L. Bryant Some remarks on G 2 -structures, Proceedings of Gökova Geometry-Topology Conference 2005, International Press, 2006, pp. 75-109 | Zbl

[3] Marisa Fernández; Anna Fino; Alberto Raffero Exact G 2 -structures on unimodular Lie algebras (2020) (https://arxiv.org/abs/1904.11066v3, to appear in Monatsh. Math.) | DOI

[4] Anna Fino; Alberto Raffero Closed G 2 -structures on non-solvable Lie groups, Rev. Mat. Complut., Volume 32 (2019) no. 3, pp. 837-851 | DOI | MR | Zbl

[5] Anna Fino; Alberto Raffero A class of eternal solutions to the G 2 -Laplacian flow (2020) (https://arxiv.org/abs/1807.01128v2, to appear in J. Geom. Anal.) | DOI

[6] Anna Fino; Alberto Raffero Closed warped G 2 -structures evolving under the Laplacian flow, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 20 (2020), pp. 315-348 | DOI

[7] Michael Jablonski Homogeneous Ricci solitons are algebraic, Geom. Topol., Volume 18 (2014) no. 4, pp. 2477-2486 | DOI | MR | Zbl

[8] Ramiro Lafuente; Jorge Lauret Structure of homogeneous Ricci solitons and the Alekseevskii conjecture, J. Differ. Geom., Volume 98 (2014) no. 2, pp. 315-347 | DOI | MR | Zbl

[9] Jorge Lauret Laplacian flow of homogeneous G 2 -structures and its solitons, Proc. Lond. Math. Soc., Volume 114 (2017) no. 3, pp. 527-560 | DOI | MR | Zbl

[10] Jorge Lauret Laplacian solitons: questions and homogeneous examples, Differ. Geom. Appl., Volume 54 (2017), pp. 345-360 | DOI | MR | Zbl

[11] Jorge Lauret; Marina Nicolini Ricci pinched G 2 -structures on Lie groups (2020) (https://arxiv.org/abs/1902.06375v3, to appear in Commun. Anal. Geom.)

[12] Christopher Lin Laplacian solitons and symmetry in G 2 -geometry, J. Geom. Phys., Volume 64 (2013), pp. 111-119 | MR | Zbl

[13] Jason D. Lotay Geometric Flows of G 2 Structures (To appear in a forthcoming volume of the Fields Institute Communications, entitled “Lectures and Surveys on G 2 manifolds and related topics”)

[14] Jason D. Lotay; Yong Wei Laplacian flow for closed G 2 structures: Shi-type estimates, uniqueness and compactness, Geom. Funct. Anal., Volume 27 (2017) no. 1, pp. 165-233 | DOI | MR | Zbl

[15] Marina Nicolini Laplacian solitons on nilpotent Lie groups, Bull. Belg. Math. Soc. Simon Stevin, Volume 25 (2018) no. 2, pp. 183-196 | DOI | MR | Zbl

Cited by Sources:

Comments - Policy