We construct a two discrete parameter family of compact minimal surfaces embedded in the Berger sphere which may be considered as the analogue of the helicoidal Karcher-Scherk surfaces.
Nous construisons une famille à deux paramètres discrets de surfaces minimales compactes plongées dans la sphère de Berger qui peut être considérée comme l’analogue de l’hélicoïde de Karcher-Scherk.
Revised:
Accepted:
Published online:
Heayong Shin 1; Young Wook Kim 2; Sung-Eun Koh 3; Hyung Yong Lee 2; Seong-Deog Yang 2

@article{CRMATH_2023__361_G1_257_0, author = {Heayong Shin and Young Wook Kim and Sung-Eun Koh and Hyung Yong Lee and Seong-Deog Yang}, title = {Addendum to the paper: {Compact} embedded minimal surfaces in the {Berger} sphere}, journal = {Comptes Rendus. Math\'ematique}, pages = {257--264}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.403}, language = {en}, }
TY - JOUR AU - Heayong Shin AU - Young Wook Kim AU - Sung-Eun Koh AU - Hyung Yong Lee AU - Seong-Deog Yang TI - Addendum to the paper: Compact embedded minimal surfaces in the Berger sphere JO - Comptes Rendus. Mathématique PY - 2023 SP - 257 EP - 264 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.403 LA - en ID - CRMATH_2023__361_G1_257_0 ER -
%0 Journal Article %A Heayong Shin %A Young Wook Kim %A Sung-Eun Koh %A Hyung Yong Lee %A Seong-Deog Yang %T Addendum to the paper: Compact embedded minimal surfaces in the Berger sphere %J Comptes Rendus. Mathématique %D 2023 %P 257-264 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.403 %G en %F CRMATH_2023__361_G1_257_0
Heayong Shin; Young Wook Kim; Sung-Eun Koh; Hyung Yong Lee; Seong-Deog Yang. Addendum to the paper: Compact embedded minimal surfaces in the Berger sphere. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 257-264. doi : 10.5802/crmath.403. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.403/
[1] (https://minimalsurfaces.blog/home/repository/singly-periodic/ helicoidal-karcher-scherk-surfaces/)
[2] The existence of embedded minimal surfaces and the problem of uniqueness, Math. Z., Volume 179 (1982), pp. 151-168 | DOI | MR | Zbl
[3] Ruled minimal surfaces in the Berger sphere, Differ. Geom. Appl., Volume 40 (2015), pp. 209-222 | DOI | MR | Zbl
[4] Compact embedded minimal surfaces in the Berger sphere, C. R. Acad. Sci. Paris, Volume 356 (2018) no. 3, pp. 333-339 | DOI | MR | Zbl
[5] Schwarz’ CLP-surfaces in , Proc. Am. Math. Soc., Volume 147 (2019) no. 4, pp. 1677-1685 | DOI | Zbl
[6] Compact minimal surfaces in the Berger spheres, Ann. Global Anal. Geom., Volume 41 (2012) no. 4, pp. 391-405 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy