Comptes Rendus
Partial differential equations
Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 337-347.

In this paper, we consider the asymptotic behavior of solutions of Monge–Ampère equations with general boundary value conditions in half spaces, which reveals the accurate effect of boundary value condition on asymptotic behavior and improves the result in [13].

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.412
Classification: 35J96, 35B40

Xiaobiao Jia 1; Xuemei Li 2

1 School of Mathematics and Statistics, North China University of Water Resources and Electric Power, Zhengzhou 450046, Henan, China.
2 School of Mathematics and Statistics, Xi’an Jiaotong University, Xi’an 710049, Shaanxi, China.
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G1_337_0,
     author = {Xiaobiao Jia and Xuemei Li},
     title = {Asymptotic behavior of solutions of {Monge{\textendash}Amp\`ere} equations with general perturbations of boundary values},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {337--347},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.412},
     language = {en},
}
TY  - JOUR
AU  - Xiaobiao Jia
AU  - Xuemei Li
TI  - Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 337
EP  - 347
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.412
LA  - en
ID  - CRMATH_2023__361_G1_337_0
ER  - 
%0 Journal Article
%A Xiaobiao Jia
%A Xuemei Li
%T Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values
%J Comptes Rendus. Mathématique
%D 2023
%P 337-347
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.412
%G en
%F CRMATH_2023__361_G1_337_0
Xiaobiao Jia; Xuemei Li. Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 337-347. doi : 10.5802/crmath.412. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.412/

[1] Aleksandr D. Aleksandrov Dirichlet’s problem for the equation Detz ij =φ(z 1 ,,z n ,z,x 1 ,,x n ), Vestn. Leningr. Univ., Mat. Mekh. Astron., Volume 13 (1958) no. 1, pp. 5-24 | MR | Zbl

[2] Sheldon J. Axler; Paul Bourdon; Wade Ramey Harmonic function theory, Graduate Texts in Mathematics, 137, Springer, 1992 | DOI | Zbl

[3] Il’ya J. Bakel’man A generalization of the solution of Monge–Ampère equations, Dokl. Akad. Nauk SSSR, n. Ser., Volume 114 (1957), pp. 1143-1145 | Zbl

[4] Jiguang Bao; Haigang Li; Yan Yan Li On the exterior Dirichlet problem for Hessian equations, Trans. Am. Math. Soc., Volume 366 (2014) no. 12, pp. 6183-6200 | MR | Zbl

[5] Jiguang Bao; Haigang Li; Lei Zhang Monge–Ampère equation on exterior domains, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1-2, pp. 39-63 | Zbl

[6] Luis A. Caffarelli Topics in PDEs: The Monge–Ampère equation. Graduate course, Courant Institute, 1995

[7] Luis A. Caffarelli; Yan Yan Li An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 549-583 | DOI | Zbl

[8] Eugenio Calabi Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Mich. Math. J., Volume 5 (1958), pp. 105-126 | Zbl

[9] Shiu-Yuen Cheng; Shing-Tung Yau Complete affine hypersurfaces. I. The completeness of affine metrics, Commun. Pure Appl. Math., Volume 39 (1986) no. 6, pp. 839-866 | DOI | MR | Zbl

[10] Leonor Ferrer; Antonio Martínez; Francisco Milán An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math. Z., Volume 230 (1999) no. 3, pp. 471-486 | DOI | Zbl

[11] Leonor Ferrer; Antonio Martínez; Francisco Milán The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math., Volume 130 (2000) no. 1, pp. 19-27 | DOI | MR | Zbl

[12] Guanghao Hong; Yu Yuan Maximal hypersurfaces over exterior domains, Commun. Pure Appl. Math., Volume 74 (2021) no. 3, pp. 589-614 | DOI | MR | Zbl

[13] Xiaobiao Jia; Dongsheng Li The asymptotic behavior of viscosity solutions of Monge–Ampère equations in half space, Nonlinear Anal., Theory Methods Appl., Volume 206 (2021), 112229, 23 pages | Zbl

[14] Tangyu Jiang; Haigang Li; Xiaoliang Li On the exterior Dirichlet problem for a class of fully nonlinear elliptic equations, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 1, 17, 20 pages | MR | Zbl

[15] Konrad Jörgens Über die Lösungen der Differentialgleichung rt-s 2 =1, Math. Ann., Volume 127 (1954), pp. 130-134 | DOI | Zbl

[16] Jürgen Jost; Yuanlong Xin Some aspects of the global geometry of entire space-like submanifolds, Results Math., Volume 40 (2001) no. 1-4, pp. 233-245 | DOI | MR | Zbl

[17] Dongsheng Li; Zhisu Li; Yu Yuan A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math., Volume 361 (2020), 106927, 29 pages | MR | Zbl

[18] Haigang Li; Jiguang Bao The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian, J. Differ. Equations, Volume 256 (2014) no. 7, pp. 2480-2501 | MR | Zbl

[19] Zhisu Li On the exterior Dirichlet problem for special Lagrangian equations, Trans. Am. Math. Soc., Volume 372 (2019) no. 2, pp. 889-924 | MR | Zbl

[20] Zixiao Liu; Jiguang Bao Asymptotic Expansion at Infinity of Solutions of Special Lagrangian Equations, J. Geom. Anal., Volume 32 (2022) no. 3, 90, 34 pages | MR | Zbl

[21] Connor Mooney The Monge–Ampère equation (2018) (https://arxiv.org/abs/1806.09945)

[22] Alekseĭ V. Pogorelo On the improper convex affine hyperspheres, Geom. Dedicata, Volume 1 (1972) no. 1, pp. 33-46 | MR | Zbl

[23] Ovidiu Savin Pointwise C 2,α estimates at the boundary for the Monge–Ampère equation, J. Am. Math. Soc., Volume 26 (2013) no. 1, pp. 63-99 | DOI | Zbl

[24] Ovidiu Savin A localization theorem and boundary regularity for a class of degenerate Monge–Ampère equations, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 327-388 | DOI | Zbl

[25] David Siegel; E. O. Talvila Uniqueness for the n-dimensional half space Dirichlet problem, Pac. J. Math., Volume 175 (1996) no. 2, pp. 571-587 | DOI | MR | Zbl

[26] Wei Zhang; Jiguang Bao A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1143-1173 | DOI | Zbl

[27] Wei Zhang; Jiguang Bao; Bo Wang An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge–Ampère equation, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 3, 90, 36 pages | Zbl

[28] Ziwei Zhou; Shuyu Gong; Jiguang Bao Ancient solutions of exterior problem of parabolic Monge–Ampère equations, Ann. Mat. Pura Appl., Volume 200 (2021) no. 4, pp. 1605-1624 | DOI | Zbl

Cited by Sources:

Comments - Policy