In this paper, we consider the asymptotic behavior of solutions of Monge–Ampère equations with general boundary value conditions in half spaces, which reveals the accurate effect of boundary value condition on asymptotic behavior and improves the result in [13].
Revised:
Accepted:
Published online:
Xiaobiao Jia 1; Xuemei Li 2
@article{CRMATH_2023__361_G1_337_0, author = {Xiaobiao Jia and Xuemei Li}, title = {Asymptotic behavior of solutions of {Monge{\textendash}Amp\`ere} equations with general perturbations of boundary values}, journal = {Comptes Rendus. Math\'ematique}, pages = {337--347}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.412}, language = {en}, }
TY - JOUR AU - Xiaobiao Jia AU - Xuemei Li TI - Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values JO - Comptes Rendus. Mathématique PY - 2023 SP - 337 EP - 347 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.412 LA - en ID - CRMATH_2023__361_G1_337_0 ER -
%0 Journal Article %A Xiaobiao Jia %A Xuemei Li %T Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values %J Comptes Rendus. Mathématique %D 2023 %P 337-347 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.412 %G en %F CRMATH_2023__361_G1_337_0
Xiaobiao Jia; Xuemei Li. Asymptotic behavior of solutions of Monge–Ampère equations with general perturbations of boundary values. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 337-347. doi : 10.5802/crmath.412. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.412/
[1] Dirichlet’s problem for the equation , Vestn. Leningr. Univ., Mat. Mekh. Astron., Volume 13 (1958) no. 1, pp. 5-24 | MR | Zbl
[2] Harmonic function theory, Graduate Texts in Mathematics, 137, Springer, 1992 | DOI | Zbl
[3] A generalization of the solution of Monge–Ampère equations, Dokl. Akad. Nauk SSSR, n. Ser., Volume 114 (1957), pp. 1143-1145 | Zbl
[4] On the exterior Dirichlet problem for Hessian equations, Trans. Am. Math. Soc., Volume 366 (2014) no. 12, pp. 6183-6200 | MR | Zbl
[5] Monge–Ampère equation on exterior domains, Calc. Var. Partial Differ. Equ., Volume 52 (2015) no. 1-2, pp. 39-63 | Zbl
[6] Topics in PDEs: The Monge–Ampère equation. Graduate course, Courant Institute, 1995
[7] An extension to a theorem of Jörgens, Calabi, and Pogorelov, Commun. Pure Appl. Math., Volume 56 (2003) no. 5, pp. 549-583 | DOI | Zbl
[8] Improper affine hyperspheres of convex type and a generalization of a theorem by K. Jörgens, Mich. Math. J., Volume 5 (1958), pp. 105-126 | Zbl
[9] Complete affine hypersurfaces. I. The completeness of affine metrics, Commun. Pure Appl. Math., Volume 39 (1986) no. 6, pp. 839-866 | DOI | MR | Zbl
[10] An extension of a theorem by K. Jörgens and a maximum principle at infinity for parabolic affine spheres, Math. Z., Volume 230 (1999) no. 3, pp. 471-486 | DOI | Zbl
[11] The space of parabolic affine spheres with fixed compact boundary, Monatsh. Math., Volume 130 (2000) no. 1, pp. 19-27 | DOI | MR | Zbl
[12] Maximal hypersurfaces over exterior domains, Commun. Pure Appl. Math., Volume 74 (2021) no. 3, pp. 589-614 | DOI | MR | Zbl
[13] The asymptotic behavior of viscosity solutions of Monge–Ampère equations in half space, Nonlinear Anal., Theory Methods Appl., Volume 206 (2021), 112229, 23 pages | Zbl
[14] On the exterior Dirichlet problem for a class of fully nonlinear elliptic equations, Calc. Var. Partial Differ. Equ., Volume 60 (2021) no. 1, 17, 20 pages | MR | Zbl
[15] Über die Lösungen der Differentialgleichung , Math. Ann., Volume 127 (1954), pp. 130-134 | DOI | Zbl
[16] Some aspects of the global geometry of entire space-like submanifolds, Results Math., Volume 40 (2001) no. 1-4, pp. 233-245 | DOI | MR | Zbl
[17] A Bernstein problem for special Lagrangian equations in exterior domains, Adv. Math., Volume 361 (2020), 106927, 29 pages | MR | Zbl
[18] The exterior Dirichlet problem for fully nonlinear elliptic equations related to the eigenvalues of the Hessian, J. Differ. Equations, Volume 256 (2014) no. 7, pp. 2480-2501 | MR | Zbl
[19] On the exterior Dirichlet problem for special Lagrangian equations, Trans. Am. Math. Soc., Volume 372 (2019) no. 2, pp. 889-924 | MR | Zbl
[20] Asymptotic Expansion at Infinity of Solutions of Special Lagrangian Equations, J. Geom. Anal., Volume 32 (2022) no. 3, 90, 34 pages | MR | Zbl
[21] The Monge–Ampère equation (2018) (https://arxiv.org/abs/1806.09945)
[22] On the improper convex affine hyperspheres, Geom. Dedicata, Volume 1 (1972) no. 1, pp. 33-46 | MR | Zbl
[23] Pointwise estimates at the boundary for the Monge–Ampère equation, J. Am. Math. Soc., Volume 26 (2013) no. 1, pp. 63-99 | DOI | Zbl
[24] A localization theorem and boundary regularity for a class of degenerate Monge–Ampère equations, J. Differ. Equations, Volume 256 (2014) no. 2, pp. 327-388 | DOI | Zbl
[25] Uniqueness for the -dimensional half space Dirichlet problem, Pac. J. Math., Volume 175 (1996) no. 2, pp. 571-587 | DOI | MR | Zbl
[26] A Calabi theorem for solutions to the parabolic Monge–Ampère equation with periodic data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1143-1173 | DOI | Zbl
[27] An extension of Jörgens-Calabi-Pogorelov theorem to parabolic Monge–Ampère equation, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 3, 90, 36 pages | Zbl
[28] Ancient solutions of exterior problem of parabolic Monge–Ampère equations, Ann. Mat. Pura Appl., Volume 200 (2021) no. 4, pp. 1605-1624 | DOI | Zbl
Cited by Sources:
Comments - Policy