We consider the Newtonian planar three-body problem. One defines a generalised syzygy as a configuration where the three bodies or their velocities become collinear. Assuming that the motion is bounded and collision-free, we provide a simple sufficient condition for the existence of such configurations. Our proof is elementary and uses only basic tools from the Sturm–Liouville theory.
Nous considérons le problème plan des trois corps. On définit une syzygie généralisée comme une configuration où les trois corps ou leurs vitesses deviennent colinéaires. En supposant que le mouvement est borné et sans collision, nous fournissons une condition suffisante pour l’existence de telles configurations. Nos principaux outils sont élémentaires et basés sur la théorie de Sturm–Liouville.
Revised:
Accepted:
Published online:
Alexei Tsygvintsev 1
@article{CRMATH_2023__361_G1_331_0, author = {Alexei Tsygvintsev}, title = {On the existence of generalised syzygies in the planar three-body problem}, journal = {Comptes Rendus. Math\'ematique}, pages = {331--335}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.409}, language = {en}, }
Alexei Tsygvintsev. On the existence of generalised syzygies in the planar three-body problem. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 331-335. doi : 10.5802/crmath.409. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.409/
[1] Le Problème des corps et les distances mutuelles, Invent. Math., Volume 131 (1998) no. 1, pp. 151-184 | DOI | Zbl
[2] Transformation theory and application, North-Holland, 1985
[3] Non-avoided Crossings for n-Body Balanced Configurations in Near a Central Configuration, Arnold Math. J., Volume 2 (2016) no. 2, pp. 213-248 | DOI | MR | Zbl
[4] A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. Math., Volume 152 (2000) no. 3, pp. 881-901 | DOI | MR | Zbl
[5] The zero angular momentum, three-body problem: All but one solution has syzygies, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 6, pp. 311-340 | DOI | MR | Zbl
[6] Oscillating about coplanarity in the 4 body problem, Invent. Math., Volume 218 (2019) no. 1, pp. 113-144 | DOI | MR | Zbl
[7] The analytical foundations of Celestial Mechanics, Princeton Mathematical Series, 5, Princeton University Press, 1941 | Zbl
Cited by Sources:
Comments - Policy