Comptes Rendus
Dynamical systems
On the existence of generalised syzygies in the planar three-body problem
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 331-335.

We consider the Newtonian planar three-body problem. One defines a generalised syzygy as a configuration where the three bodies or their velocities become collinear. Assuming that the motion is bounded and collision-free, we provide a simple sufficient condition for the existence of such configurations. Our proof is elementary and uses only basic tools from the Sturm–Liouville theory.

Nous considérons le problème plan des trois corps. On définit une syzygie généralisée comme une configuration où les trois corps ou leurs vitesses deviennent colinéaires. En supposant que le mouvement est borné et sans collision, nous fournissons une condition suffisante pour l’existence de telles configurations. Nos principaux outils sont élémentaires et basés sur la théorie de Sturm–Liouville.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.409
Classification: 92B05

Alexei Tsygvintsev 1

1 ENS de Lyon, UMPA, 46 allée d’Italie, 69364 Lyon Cedex 07, FRANCE
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G1_331_0,
     author = {Alexei Tsygvintsev},
     title = {On the existence of generalised syzygies in the planar three-body problem},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {331--335},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.409},
     language = {en},
}
TY  - JOUR
AU  - Alexei Tsygvintsev
TI  - On the existence of generalised syzygies in the planar three-body problem
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 331
EP  - 335
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.409
LA  - en
ID  - CRMATH_2023__361_G1_331_0
ER  - 
%0 Journal Article
%A Alexei Tsygvintsev
%T On the existence of generalised syzygies in the planar three-body problem
%J Comptes Rendus. Mathématique
%D 2023
%P 331-335
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.409
%G en
%F CRMATH_2023__361_G1_331_0
Alexei Tsygvintsev. On the existence of generalised syzygies in the planar three-body problem. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 331-335. doi : 10.5802/crmath.409. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.409/

[1] Alain Albouy; Alain Chenciner Le Problème des N corps et les distances mutuelles, Invent. Math., Volume 131 (1998) no. 1, pp. 151-184 | DOI | Zbl

[2] R. Carroll Transformation theory and application, North-Holland, 1985

[3] Alain Chenciner Non-avoided Crossings for n-Body Balanced Configurations in 3 Near a Central Configuration, Arnold Math. J., Volume 2 (2016) no. 2, pp. 213-248 | DOI | MR | Zbl

[4] Alain Chenciner; Richard Montgomery A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. Math., Volume 152 (2000) no. 3, pp. 881-901 | DOI | MR | Zbl

[5] Richard Montgomery The zero angular momentum, three-body problem: All but one solution has syzygies, Ergodic Theory Dyn. Syst., Volume 27 (2007) no. 6, pp. 311-340 | DOI | MR | Zbl

[6] Richard Montgomery Oscillating about coplanarity in the 4 body problem, Invent. Math., Volume 218 (2019) no. 1, pp. 113-144 | DOI | MR | Zbl

[7] Aurel Wintner The analytical foundations of Celestial Mechanics, Princeton Mathematical Series, 5, Princeton University Press, 1941 | Zbl

Cited by Sources:

Comments - Policy