Let be homogeneous of degree zero with mean value zero, and real polynomials on with and for some This note extends and improves a classical result of Stein and Wainger (Ann. Math. Stud. 112, pp. 307-355, (1986)) to the following general form
where depend only on , and the degrees of and , but not on their coefficients.
Accepted:
Published online:
Chenyan Wang 1; Huoxiong Wu 1
@article{CRMATH_2023__361_G1_363_0, author = {Chenyan Wang and Huoxiong Wu}, title = {A note on singular oscillatory integrals with certain rational phases}, journal = {Comptes Rendus. Math\'ematique}, pages = {363--370}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.418}, language = {en}, }
Chenyan Wang; Huoxiong Wu. A note on singular oscillatory integrals with certain rational phases. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 363-370. doi : 10.5802/crmath.418. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.418/
[1] Weighted Estimates for Oscillatory Singular Integrals, J. Funct. Spaces Appl., Volume 2013 (2013), 543748, 3 pages | MR | Zbl
[2] Multidimensional van der Corput and sublevel set estimates, J. Am. Math. Soc., Volume 12 (1999) no. 4, pp. 981-1015 | DOI | MR | Zbl
[3] An estimation for a family of oscillatory integrals, Stud. Math., Volume 154 (2003) no. 1, pp. 89-97 | DOI | MR | Zbl
[4] Block spaces on the unit sphere in , Proc. Am. Math. Soc., Volume 119 (1993) no. 2, pp. 453-455 | MR | Zbl
[5] Spaces Generated by Blocks, Publishing House of Beijing Normal University, 1989
[6] Singular oscillatory integrals on , Math. Z., Volume 266 (2010) no. 1, pp. 169-179 | DOI | Zbl
[7] A sharp bound for the Stein–Wainger oscillatory integral, Proc. Am. Math. Soc., Volume 136 (2008) no. 3, pp. 963-972 | DOI | MR | Zbl
[8] Oscillation integrals in Fourier analysis, Beijing Lectures in Harmonic Analysis (Beijing, 1984) (Annals of Mathematics Studies), Volume 112, Princeton University Press, 1986, pp. 307-355 | Zbl
[9] The estimation of an integral arising in multiplier transformations, Stud. Math., Volume 35 (1970), pp. 101-104 | DOI | MR | Zbl
[10] A note on certain block spaces on the unit sphere, Acta Math. Sin., Engl. Ser., Volume 22 (2006) no. 6, pp. 1843-1846 | MR | Zbl
Cited by Sources:
Comments - Policy