Gendron proved that the strata of holomorphic differentials with prescribed orders of zeros do not contain complete algebraic curves by applying the maximum modulus principle to saddle connections. Here we provide an alternative proof for this result by using positivity of divisor classes on moduli spaces of curves.
Révisé le :
Accepté le :
Publié le :
Dawei Chen 1
@article{CRMATH_2023__361_G1_371_0, author = {Dawei Chen}, title = {Complete curves in the strata of differentials}, journal = {Comptes Rendus. Math\'ematique}, pages = {371--373}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.416}, language = {en}, }
Dawei Chen. Complete curves in the strata of differentials. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 371-373. doi : 10.5802/crmath.416. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.416/
[1] Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011 (with a contribution by Joseph Daniel Harris) | Zbl
[2] Strata of -differentials, Algebr. Geom., Volume 6 (2019) no. 2, pp. 196-233 | MR | Zbl
[3] Teichmüller dynamics in the eyes of an algebraic geometer, Surveys on recent developments in algebraic geometry (Proceedings of Symposia in Pure Mathematics), Volume 95, American Mathematical Society, 2017, pp. 171-197 | Zbl
[4] Affine geometry of strata of differentials, J. Inst. Math. Jussieu, Volume 18 (2019) no. 6, pp. 1331-1340 | DOI | MR | Zbl
[5] Tautological ring of strata of differentials, Manuscr. Math., Volume 158 (2019) no. 3-4, pp. 345-351 | DOI | MR | Zbl
[6] Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol., Volume 16 (2012) no. 4, pp. 2427-2479 | DOI | MR | Zbl
[7] On the projectivity of the moduli spaces of curves, J. Reine Angew. Math., Volume 443 (1993), pp. 11-20 | MR | Zbl
[8] A bound on the dimensions of complete subvarieties of , Duke Math. J., Volume 51 (1984) no. 2, pp. 405-408 | MR | Zbl
[9] Les strates ne possèdent pas de variétés complètes, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 2, pp. 197-200 | Numdam | MR | Zbl
[10] Translation surfaces and their orbit closures: an introduction for a broad audience, EMS Surv. Math. Sci., Volume 2 (2015) no. 1, pp. 63-108 | DOI | MR | Zbl
[11] Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, 2006, pp. 437-583 | Zbl
Cité par Sources :
Commentaires - Politique