Comptes Rendus
Analyse et géométrie complexes
Complete curves in the strata of differentials
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 371-373.

Gendron proved that the strata of holomorphic differentials with prescribed orders of zeros do not contain complete algebraic curves by applying the maximum modulus principle to saddle connections. Here we provide an alternative proof for this result by using positivity of divisor classes on moduli spaces of curves.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.416

Dawei Chen 1

1 Department of Mathematics, Boston College, Chestnut Hill, MA 02467, USA
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G1_371_0,
     author = {Dawei Chen},
     title = {Complete curves in the strata of differentials},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {371--373},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.416},
     language = {en},
}
TY  - JOUR
AU  - Dawei Chen
TI  - Complete curves in the strata of differentials
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 371
EP  - 373
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.416
LA  - en
ID  - CRMATH_2023__361_G1_371_0
ER  - 
%0 Journal Article
%A Dawei Chen
%T Complete curves in the strata of differentials
%J Comptes Rendus. Mathématique
%D 2023
%P 371-373
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.416
%G en
%F CRMATH_2023__361_G1_371_0
Dawei Chen. Complete curves in the strata of differentials. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 371-373. doi : 10.5802/crmath.416. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.416/

[1] E. Arbarello; M. Cornalba; P. Griffiths Geometry of algebraic curves. Volume II, Grundlehren der Mathematischen Wissenschaften, 268, Springer, 2011 (with a contribution by Joseph Daniel Harris) | Zbl

[2] Matt Bainbridge; Dawei Chen; Quentin Gendron; Samuel Grushevsky; Martin Möller Strata of k-differentials, Algebr. Geom., Volume 6 (2019) no. 2, pp. 196-233 | MR | Zbl

[3] Dawei Chen Teichmüller dynamics in the eyes of an algebraic geometer, Surveys on recent developments in algebraic geometry (Proceedings of Symposia in Pure Mathematics), Volume 95, American Mathematical Society, 2017, pp. 171-197 | Zbl

[4] Dawei Chen Affine geometry of strata of differentials, J. Inst. Math. Jussieu, Volume 18 (2019) no. 6, pp. 1331-1340 | DOI | MR | Zbl

[5] Dawei Chen Tautological ring of strata of differentials, Manuscr. Math., Volume 158 (2019) no. 3-4, pp. 345-351 | DOI | MR | Zbl

[6] Dawei Chen; Martin Möller Nonvarying sums of Lyapunov exponents of Abelian differentials in low genus, Geom. Topol., Volume 16 (2012) no. 4, pp. 2427-2479 | DOI | MR | Zbl

[7] M. D. T. Cornalba On the projectivity of the moduli spaces of curves, J. Reine Angew. Math., Volume 443 (1993), pp. 11-20 | MR | Zbl

[8] Steven Diaz A bound on the dimensions of complete subvarieties of g , Duke Math. J., Volume 51 (1984) no. 2, pp. 405-408 | MR | Zbl

[9] Quentin Gendron Les strates ne possèdent pas de variétés complètes, C. R. Math. Acad. Sci. Paris, Volume 358 (2020) no. 2, pp. 197-200 | Numdam | MR | Zbl

[10] Alex Wright Translation surfaces and their orbit closures: an introduction for a broad audience, EMS Surv. Math. Sci., Volume 2 (2015) no. 1, pp. 63-108 | DOI | MR | Zbl

[11] Anton Zorich Flat surfaces, Frontiers in number theory, physics, and geometry. I, Springer, 2006, pp. 437-583 | Zbl

Cité par Sources :

Commentaires - Politique