Comptes Rendus
Partial differential equations
Uniqueness of bounded solutions to p-Laplace problems in strips
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 795-801.

We consider a p-Laplace problem in a strip with two-constant boundary Dirichlet conditions. We show that if the width of the strip is smaller than some d 0 (0,+], then the problem admits a unique bounded solution, which is strictly monotone. Hence this unique solution is one-dimensional symmetric and belongs to the C 2 class. We also show that the problem has no bounded solution in the case that d 0 <+ and the width of the strip is larger than or equal to d 0 . An analogous rigidity result in the whole space was obtained recently by Esposito et al. [8]

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.442
Classification: 35J92, 35A01, 35A02, 35B06
Keywords: $p$-Laplace equation, uniqueness, monotonicity, 1D symmetry

Phuong Le 1, 2

1 Faculty of Economic Mathematics, University of Economics and Law, Ho Chi Minh City, Vietnam
2 Vietnam National University, Ho Chi Minh City, Vietnam
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G4_795_0,
     author = {Phuong Le},
     title = {Uniqueness of bounded solutions to $p${-Laplace} problems in strips},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {795--801},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.442},
     language = {en},
}
TY  - JOUR
AU  - Phuong Le
TI  - Uniqueness of bounded solutions to $p$-Laplace problems in strips
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 795
EP  - 801
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.442
LA  - en
ID  - CRMATH_2023__361_G4_795_0
ER  - 
%0 Journal Article
%A Phuong Le
%T Uniqueness of bounded solutions to $p$-Laplace problems in strips
%J Comptes Rendus. Mathématique
%D 2023
%P 795-801
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.442
%G en
%F CRMATH_2023__361_G4_795_0
Phuong Le. Uniqueness of bounded solutions to $p$-Laplace problems in strips. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 795-801. doi : 10.5802/crmath.442. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.442/

[1] Sigurd B. Angenent Uniqueness of the solution of a semilinear boundary value problem, Math. Ann., Volume 272 (1985) no. 1, pp. 129-138 | DOI | MR | Zbl

[2] Henri Berestycki; Luis Caffarelli; Louis Nirenberg Further qualitative properties for elliptic equations in unbounded domains, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 25 (1997) no. 1-2, pp. 69-94 (Dedicated to Ennio De Giorgi) | Numdam | MR | Zbl

[3] Henri Berestycki; Luis Caffarelli; Louis Nirenberg Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., Volume 50 (1997) no. 11, pp. 1089-1111 | DOI | MR | Zbl

[4] Philippe Clément; Guido Sweers Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 14 (1987) no. 1, pp. 97-121 | Numdam | MR | Zbl

[5] Edward N. Dancer; Yihong Du; Messoud Efendiev Quasilinear elliptic equations on half- and quarter-spaces, Adv. Nonlinear Stud., Volume 13 (2013) no. 1, pp. 115-136 | DOI | MR | Zbl

[6] Emmanuele DiBenedetto C 1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Theory Methods Appl., Volume 7 (1983) no. 8, pp. 827-850 | DOI | MR

[7] Yihong Du; Zongming Guo Symmetry for elliptic equations in a half-space without strong maximum principle, Proc. R. Soc. Edinb., Sect. A, Math., Volume 134 (2004) no. 2, pp. 259-269 | DOI | MR | Zbl

[8] Francesco Esposito; Alberto Farina; Luigi Montoro; Berardino Sciunzi On the Gibbons’ conjecture for equations involving the p-Laplacian, Math. Ann., Volume 382 (2022) no. 1-2, pp. 943-974 | DOI | MR | Zbl

[9] Alberto Farina; Luigi Montoro; Berardino Sciunzi Monotonicity and one-dimensional symmetry for solutions of -Δ p u=f(u) in half-spaces, Calc. Var. Partial Differ. Equ., Volume 43 (2012) no. 1-2, pp. 123-145 | DOI | MR | Zbl

[10] Peter Tolksdorf Regularity for a more general class of quasilinear elliptic equations, J. Differ. Equations, Volume 51 (1984) no. 1, pp. 126-150 | DOI | MR | Zbl

[11] Juan Luis Vázquez A strong maximum principle for some quasilinear elliptic equations, Appl. Math. Optim., Volume 12 (1984) no. 3, pp. 191-202 | DOI | MR

Cited by Sources:

Comments - Policy