We prove that every elementary abelian -group, for odd primes , occurs as the Schur multiplier of some non-abelian finite -group.
Revised:
Accepted:
Published online:
Keywords: Schur multiplier, finite $p$-group
Pradeep K. Rai 1
@article{CRMATH_2023__361_G4_803_0, author = {Pradeep K. Rai}, title = {On the occurrence of elementary abelian $p$-groups as the {Schur} multiplier of non-abelian $p$-groups}, journal = {Comptes Rendus. Math\'ematique}, pages = {803--806}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.445}, language = {en}, }
TY - JOUR AU - Pradeep K. Rai TI - On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups JO - Comptes Rendus. Mathématique PY - 2023 SP - 803 EP - 806 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.445 LA - en ID - CRMATH_2023__361_G4_803_0 ER -
Pradeep K. Rai. On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 803-806. doi : 10.5802/crmath.445. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.445/
[1] Schur multipliers of p-groups, J. Reine Angew. Math., Volume 309 (1979), pp. 100-113 | MR | Zbl
[2] Computing the Schur multipliers of the Lie p-rings in the family defined by a symbolic Lie p-ring presentation, J. Symb. Comput., Volume 106 (2021), pp. 68-77 | DOI | MR | Zbl
[3] The Schur multiplier of groups of order , J. Group Theory, Volume 22 (2019) no. 4, pp. 647-687 | DOI | MR | Zbl
[4] The Schur multiplier, London Mathematical Society Monographs. New Series, 2, Clarendon Press, 1987 | MR
[5] The Kourovka notebook. Unsolved problems in group theory (Evgeniĭ I. Khukhro; Viktor D. Mazurov, eds.), Sobolev Institute of Mathematics, 2022
[6] A talk in Groups St Andrews, 2009 (https://mathshistory.st-andrews.ac.uk/Groups/2009/slides/moravec.pdf)
[7] On the Schur multiplier of the Special -groups, J. Pure Appl. Algebra, Volume 222 (2018) no. 2, pp. 316-322 | MR | Zbl
Cited by Sources:
Comments - Policy