Comptes Rendus
Group theory
On the occurrence of elementary abelian p-groups as the Schur multiplier of non-abelian p-groups
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 803-806.

We prove that every elementary abelian p-group, for odd primes p, occurs as the Schur multiplier of some non-abelian finite p-group.

Received:
Revised:
Accepted:
Published online:
DOI: 10.5802/crmath.445
Classification: 20J99, 20D15
Keywords: Schur multiplier, finite $p$-group

Pradeep K. Rai 1

1 Mahindra University, Hyderabad, Telangana, India
License: CC-BY 4.0
Copyrights: The authors retain unrestricted copyrights and publishing rights
@article{CRMATH_2023__361_G4_803_0,
     author = {Pradeep K. Rai},
     title = {On the occurrence of elementary abelian $p$-groups as the {Schur} multiplier of non-abelian $p$-groups},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {803--806},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.445},
     language = {en},
}
TY  - JOUR
AU  - Pradeep K. Rai
TI  - On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 803
EP  - 806
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.445
LA  - en
ID  - CRMATH_2023__361_G4_803_0
ER  - 
%0 Journal Article
%A Pradeep K. Rai
%T On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups
%J Comptes Rendus. Mathématique
%D 2023
%P 803-806
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.445
%G en
%F CRMATH_2023__361_G4_803_0
Pradeep K. Rai. On the occurrence of elementary abelian $p$-groups as the Schur multiplier of non-abelian $p$-groups. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 803-806. doi : 10.5802/crmath.445. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.445/

[1] Norman Blackburn; Leonard Evens Schur multipliers of p-groups, J. Reine Angew. Math., Volume 309 (1979), pp. 100-113 | MR | Zbl

[2] Bettina Eick; Taleea Jalaeeyan Ghorbanzadeh Computing the Schur multipliers of the Lie p-rings in the family defined by a symbolic Lie p-ring presentation, J. Symb. Comput., Volume 106 (2021), pp. 68-77 | DOI | MR | Zbl

[3] Sumana Hatui; Vipul Kakkar; Manoj K. Yadav The Schur multiplier of groups of order p 5 , J. Group Theory, Volume 22 (2019) no. 4, pp. 647-687 | DOI | MR | Zbl

[4] Gregory Karpilovsky The Schur multiplier, London Mathematical Society Monographs. New Series, 2, Clarendon Press, 1987 | MR

[5] The Kourovka notebook. Unsolved problems in group theory (Evgeniĭ I. Khukhro; Viktor D. Mazurov, eds.), Sobolev Institute of Mathematics, 2022

[6] Primoź Moravec A talk in Groups St Andrews, 2009 (https://mathshistory.st-andrews.ac.uk/Groups/2009/slides/moravec.pdf)

[7] Pradeep K. Rai On the Schur multiplier of the Special p-groups, J. Pure Appl. Algebra, Volume 222 (2018) no. 2, pp. 316-322 | MR | Zbl

Cited by Sources:

Comments - Policy