Let be a sequence of points on a line with consecutive points at distance one. Answering a question raised by Fox and the first author and independently by Arman and Tsaturian, we show that there is a natural number and a red/blue-colouring of for every that contains no red copy of and no blue copy of .
Accepted:
Published online:
David Conlon 1; Yu-Han Wu 2
@article{CRMATH_2023__361_G5_897_0, author = {David Conlon and Yu-Han Wu}, title = {More on lines in {Euclidean} {Ramsey} theory}, journal = {Comptes Rendus. Math\'ematique}, pages = {897--901}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.452}, language = {en}, }
David Conlon; Yu-Han Wu. More on lines in Euclidean Ramsey theory. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 897-901. doi : 10.5802/crmath.452. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.452/
[1] Equally spaced collinear points in Euclidean Ramsey theory (2017) (https://arxiv.org/abs/1705.04640)
[2] A result in asymmetric Euclidean Ramsey theory, Discrete Math., Volume 341 (2018) no. 5, pp. 1502-1508 | DOI | Zbl
[3] Algorithms in Real Algebraic Geometry, Algorithms and Computation in Mathematics, 10, Springer, 2006
[4] Lines in Euclidean Ramsey theory, Discrete Comput. Geom., Volume 61 (2019) no. 1, pp. 218-225 | DOI | Zbl
[5] Note on a Ramsey-type problem in geometry, J. Comb. Theory, Ser. A, Volume 65 (1994) no. 2, pp. 302-306 | DOI | Zbl
[6] Euclidean Ramsey theorems I, J. Comb. Theory, Ser. A, Volume 14 (1973), pp. 341-363 | DOI | Zbl
[7] Euclidean Ramsey theorems II, Infinite and finite sets (Colloq., Keszthely, 1973), Vol. I (Colloquia Mathematica Societatis János Bolyai), Volume 529, North-Holland, 1973, pp. 529-557
[8] Euclidean Ramsey theorems III, Infinite and finite sets (Colloq., Keszthely, 1973), Vol. I (Colloquia Mathematica Societatis János Bolyai), Volume 529, North-Holland, 1973, pp. 559-583
[9] A partition property of simplices in Euclidean space, J. Am. Math. Soc., Volume 3 (1990) no. 1, pp. 1-7 | DOI | Zbl
[10] Intersection theorems with geometric consequences, Combinatorica, Volume 1 (1981), pp. 357-368 | DOI | Zbl
[11] Ramsey type theorems in the plane, J. Comb. Theory, Ser. A, Volume 27 (1979), pp. 152-160 | DOI | Zbl
[12] Permutation groups in Euclidean Ramsey Theory, Proc. Am. Math. Soc., Volume 112 (1991) no. 3, pp. 899-907 | DOI | Zbl
[13] Monochromatic translates of configurations in the plane, J. Comb. Theory, Ser. A, Volume 93 (2001) no. 1, pp. 173-176 | DOI | Zbl
[14] A Euclidean Ramsey result in the plane, Electron. J. Comb., Volume 24 (2017) no. 4, P4.35, 9 pages | Zbl
Cited by Sources:
Comments - Policy