We study periodic homogenization and - dimension reduction by -con-vergence of heterogeneous thin films whose the stored-energy densities have no polynomial growth. In particular, our results are consistent with one of the basic facts of nonlinear elasticity, namely the necessity of an infinite amount of energy to compress a finite volume of matter into zero volume. However, our results are not consistent with the noninterpenetration of the matter.
Accepted:
Published online:
Omar Anza Hafsa 1; Jean-Philippe Mandallena 1
@article{CRMATH_2023__361_G5_903_0, author = {Omar Anza Hafsa and Jean-Philippe Mandallena}, title = {Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--910}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.454}, language = {en}, }
TY - JOUR AU - Omar Anza Hafsa AU - Jean-Philippe Mandallena TI - Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films JO - Comptes Rendus. Mathématique PY - 2023 SP - 903 EP - 910 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.454 LA - en ID - CRMATH_2023__361_G5_903_0 ER -
%0 Journal Article %A Omar Anza Hafsa %A Jean-Philippe Mandallena %T Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films %J Comptes Rendus. Mathématique %D 2023 %P 903-910 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.454 %G en %F CRMATH_2023__361_G5_903_0
Omar Anza Hafsa; Jean-Philippe Mandallena. Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 903-910. doi : 10.5802/crmath.454. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.454/
[1] Homogenization of nonconvex unbounded singular integrals, Ann. Math. Blaise Pascal, Volume 24 (2017) no. 2, pp. 135-193 | DOI | Numdam | Zbl
[2] On a homogenization technique for singular integrals, Asymptotic Anal., Volume 74 (2011) no. 3-4, pp. 123-134 | DOI | Zbl
[3] The nonlinear membrane energy: variational derivation under the constraint “”, J. Math. Pures Appl., Volume 86 (2006) no. 2, pp. 100-115 | DOI | Zbl
[4] The nonlinear membrane energy: variational derivation under the constraint “”, Bull. Sci. Math., Volume 132 (2008) no. 4, pp. 272-291 | DOI | Zbl
[5] Relaxation et passage 3D-2D avec contraintes de type déterminant (2009) (https://arxiv.org/abs/0901.3688)
[6] Relaxation and 3d-2d passage theorems in hyperelasticity, J. Convex Anal., Volume 19 (2012) no. 3, pp. 759-794 | Zbl
[7] Dimension reduction in variational problems, asymptotic development in -convergence and thin structures in elasticity, Asymptotic Anal., Volume 9 (1994) no. 1, pp. 61-100 | DOI | Zbl
[8] Modélisation de structures minces en élasticité non linéaire, Ph. D. Thesis, Université Pierre et Marie Curie (1996)
[9] Une méthode de -convergence pour un modèle de membrane non linéaire, C. R. Acad. Sci. Paris, Volume 324 (1997) no. 7, pp. 845-849 | DOI | Zbl
[10] Relaxation of singular functionals defined on Sobolev spaces, ESAIM, Control Optim. Calc. Var., Volume 5 (2000), pp. 71-85 | DOI | Numdam | Zbl
[11] 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404 | Zbl
[12] An introduction to -convergence, Progress in Nonlinear Differential Equations and their Applications, 8, Birkhäuser, 1993 | DOI
[13] Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle, C. R. Acad. Sci. Paris, Volume 317 (1993) no. 2, pp. 221-226 | Zbl
[14] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578 | Zbl
[15] The variational method for tensile structures (1991) (Preprint 16, Dipartimento di Matematica Politecnico di Torino)
[16] Heterogeneous thin films of martensitic materials, Arch. Ration. Mech. Anal., Volume 153 (2000) no. 1, pp. 39-90 | DOI | Zbl
Cited by Sources:
Comments - Policy