We study periodic homogenization and
Accepté le :
Publié le :
Omar Anza Hafsa 1 ; Jean-Philippe Mandallena 1

@article{CRMATH_2023__361_G5_903_0, author = {Omar Anza Hafsa and Jean-Philippe Mandallena}, title = {Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films}, journal = {Comptes Rendus. Math\'ematique}, pages = {903--910}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.454}, language = {en}, }
TY - JOUR AU - Omar Anza Hafsa AU - Jean-Philippe Mandallena TI - Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films JO - Comptes Rendus. Mathématique PY - 2023 SP - 903 EP - 910 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.454 LA - en ID - CRMATH_2023__361_G5_903_0 ER -
%0 Journal Article %A Omar Anza Hafsa %A Jean-Philippe Mandallena %T Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films %J Comptes Rendus. Mathématique %D 2023 %P 903-910 %V 361 %I Académie des sciences, Paris %R 10.5802/crmath.454 %G en %F CRMATH_2023__361_G5_903_0
Omar Anza Hafsa; Jean-Philippe Mandallena. Remarks on homogenization and $3D$-$2D$ dimension reduction of unbounded energies on thin films. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 903-910. doi : 10.5802/crmath.454. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.454/
[1] Homogenization of nonconvex unbounded singular integrals, Ann. Math. Blaise Pascal, Volume 24 (2017) no. 2, pp. 135-193 | DOI | Numdam | Zbl
[2] On a homogenization technique for singular integrals, Asymptotic Anal., Volume 74 (2011) no. 3-4, pp. 123-134 | DOI | Zbl
[3] The nonlinear membrane energy: variational derivation under the constraint “
[4] The nonlinear membrane energy: variational derivation under the constraint “
[5] Relaxation et passage 3D-2D avec contraintes de type déterminant (2009) (https://arxiv.org/abs/0901.3688)
[6] Relaxation and 3d-2d passage theorems in hyperelasticity, J. Convex Anal., Volume 19 (2012) no. 3, pp. 759-794 | Zbl
[7] Dimension reduction in variational problems, asymptotic development in
[8] Modélisation de structures minces en élasticité non linéaire, Ph. D. Thesis, Université Pierre et Marie Curie (1996)
[9] Une méthode de
[10] Relaxation of singular functionals defined on Sobolev spaces, ESAIM, Control Optim. Calc. Var., Volume 5 (2000), pp. 71-85 | DOI | Numdam | Zbl
[11] 3D-2D asymptotic analysis for inhomogeneous thin films, Indiana Univ. Math. J., Volume 49 (2000) no. 4, pp. 1367-1404 | Zbl
[12] An introduction to
[13] Le modèle de membrane non linéaire comme limite variationnelle de l’élasticité non linéaire tridimensionnelle, C. R. Acad. Sci. Paris, Volume 317 (1993) no. 2, pp. 221-226 | Zbl
[14] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity, J. Math. Pures Appl., Volume 74 (1995) no. 6, pp. 549-578 | Zbl
[15] The variational method for tensile structures (1991) (Preprint 16, Dipartimento di Matematica Politecnico di Torino)
[16] Heterogeneous thin films of martensitic materials, Arch. Ration. Mech. Anal., Volume 153 (2000) no. 1, pp. 39-90 | DOI | Zbl
- Non-interpenetration of rods derived by
-limits, M AS. Mathematical Models Methods in Applied Sciences, Volume 35 (2025) no. 1, pp. 1-38 | DOI:10.1142/s0218202525500010 | Zbl:8005752
Cité par 1 document. Sources : zbMATH
Commentaires - Politique