In a recent work [3], the authors established new results about general linear Mahler systems in several variables from the perspective of transcendental number theory, such as a multivariate extension of Nishioka’s theorem. Working with functions of several variables and with different Mahler transformations leads to a number of complications, including the need to prove a general vanishing theorem and to use tools from ergodic Ramsey theory and Diophantine approximation (e.g., a variant of the
Révisé le :
Accepté le :
Publié le :
Boris Adamczewski 1 ; Colin Faverjon 1

@article{CRMATH_2023__361_G6_1011_0, author = {Boris Adamczewski and Colin Faverjon}, title = {A new proof of {Nishioka{\textquoteright}s} theorem in {Mahler{\textquoteright}s} method}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1028}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.458}, language = {en}, }
Boris Adamczewski; Colin Faverjon. A new proof of Nishioka’s theorem in Mahler’s method. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1011-1028. doi : 10.5802/crmath.458. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.458/
[1] Méthode de Mahler: relations linéaires, transcendance et applications aux nombres automatiques, Proc. Lond. Math. Soc., Volume 115 (2017) no. 1, pp. 55-90 | DOI | Zbl
[2] Méthode de Mahler, transcendance et relations linéaires: aspects effectifs, J. Théor. Nombres Bordeaux, Volume 30 (2018) no. 2, pp. 557-573 | DOI | Numdam | Zbl
[3] Mahler’s method in several variables and finite automata (2020) (https://arxiv.org/abs/2012.08283)
[4] A new proof of Nishioka’s theorem in Mahler’s method (2022) (https://arxiv.org/abs/2210.14528)
[5] Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité, Ann. Math., Volume 151 (2000) no. 2, pp. 705-740 | DOI | Zbl
[6] Séries Gevrey de type arithmétique II. Transcendance sans transcendance, Ann. Math., Volume 151 (2000) no. 2, pp. 741-756 | DOI | Zbl
[7] Solution algebras of differential equations and quasi-homogeneous varieties
[8] A refined version of the Siegel–Shidlovskii theorem, Ann. Math., Volume 163 (2006) no. 1, pp. 369-379 | DOI | MR | Zbl
[9] Récurrences mahlériennes, suites automatiques, études asymptotiques, Ph. D. Thesis, Université Bordeaux I, Talence (1993) (https://theses.hal.science/tel-00614660) | MR
[10] Transcendental numbers. Number theory IV, Encyclopaedia of Mathematical Sciences, 44, Springer, 1998
[11] Méthode de Mahler en caractéristique non nulle: un analogue du théorème de Ku. Nishioka, Ann. Inst. Fourier, Volume 68 (2018) no. 6, pp. 2553-2580 | DOI | Numdam | MR | Zbl
[12] Topics in matrix analysis, Cambridge University Press, 1994
[13] On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann., Volume 227 (1977), pp. 9-50 | DOI | MR | Zbl
[14] Algebra, 3rd revised ed, Graduate Texts in Mathematics, 211, Springer, 2002 | Numdam
[15] Arithmetic properties of the solutions of a class of functional equations, J. Reine Angew. Math., Volume 330 (1982), pp. 159-172 | MR | Zbl
[16] Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z., Volume 32 (1930), pp. 545-585 | DOI | MR | Zbl
[17] A general theory of André’s solution algebras, Ann. Inst. Fourier, Volume 70 (2020) no. 5, pp. 2003-2129 | Numdam | Zbl
[18] Estimate of the orders of the zeroes of functions of a certain class, and their application in the theory of transcendental numbers, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 41 (1977), pp. 253-284 | MR
[19] New approach in Mahler’s method, J. Reine Angew. Math., Volume 407 (1990), pp. 202-219 | MR | Zbl
[20] Algebraic independence by Mahler’s method and S-unit equations, Compos. Math., Volume 92 (1994) no. 1, pp. 87-110 | Numdam | MR | Zbl
[21] Algebraic independence of Mahler functions and their values, Tôhoku Math. J., Volume 48 (1996) no. 1, pp. 51-70 | MR | Zbl
[22] Critères pour l’indépendance algébrique, Publ. Math., Inst. Hautes Étud. Sci., Volume 64 (1986), pp. 5-52 | DOI | Numdam | Zbl
[23] Groupes de Galois et nombres automatiques, J. Lond. Math. Soc., Volume 92 (2015) no. 3, pp. 596-614 | DOI | MR | Zbl
[24] Équations fonctionnelles de Mahler et applications aux suites
[25] Transcendental numbers, De Gruyter Studies in Mathematics, 12, Walter de Gruyter, 1989 | DOI
[26] Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables, Grundlehren der Mathematischen Wissenschaften, 326, Springer, 2000 | DOI | Numdam
[27] Commutative algebra II, Graduate Texts in Mathematics, 29, Springer, 1976
Cité par Sources :
Commentaires - Politique