In a recent work [3], the authors established new results about general linear Mahler systems in several variables from the perspective of transcendental number theory, such as a multivariate extension of Nishioka’s theorem. Working with functions of several variables and with different Mahler transformations leads to a number of complications, including the need to prove a general vanishing theorem and to use tools from ergodic Ramsey theory and Diophantine approximation (e.g., a variant of the -adic Schmidt subspace theorem). These complications make the proof of the main results proved in [3] rather intricate. In this article, we describe our new approach in the special case of linear Mahler systems in one variable. This leads to a new, elementary, and self-contained proof of Nishioka’s theorem, as well as of the lifting theorem more recently obtained by Philippon [23] and the authors [1]. Though the general strategy remains the same as in [3], the proof turns out to be greatly simplified. Beyond its own interest, we hope that reading this article will facilitate the understanding of the proof of the main results obtained in [3].
Revised:
Accepted:
Published online:
Boris Adamczewski 1; Colin Faverjon 1
@article{CRMATH_2023__361_G6_1011_0, author = {Boris Adamczewski and Colin Faverjon}, title = {A new proof of {Nishioka{\textquoteright}s} theorem in {Mahler{\textquoteright}s} method}, journal = {Comptes Rendus. Math\'ematique}, pages = {1011--1028}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.458}, language = {en}, }
Boris Adamczewski; Colin Faverjon. A new proof of Nishioka’s theorem in Mahler’s method. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1011-1028. doi : 10.5802/crmath.458. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.458/
[1] Méthode de Mahler: relations linéaires, transcendance et applications aux nombres automatiques, Proc. Lond. Math. Soc., Volume 115 (2017) no. 1, pp. 55-90 | DOI | Zbl
[2] Méthode de Mahler, transcendance et relations linéaires: aspects effectifs, J. Théor. Nombres Bordeaux, Volume 30 (2018) no. 2, pp. 557-573 | DOI | Numdam | Zbl
[3] Mahler’s method in several variables and finite automata (2020) (https://arxiv.org/abs/2012.08283)
[4] A new proof of Nishioka’s theorem in Mahler’s method (2022) (https://arxiv.org/abs/2210.14528)
[5] Séries Gevrey de type arithmétique I. Théorèmes de pureté et de dualité, Ann. Math., Volume 151 (2000) no. 2, pp. 705-740 | DOI | Zbl
[6] Séries Gevrey de type arithmétique II. Transcendance sans transcendance, Ann. Math., Volume 151 (2000) no. 2, pp. 741-756 | DOI | Zbl
[7] Solution algebras of differential equations and quasi-homogeneous varieties a new differential Galois correspondence, Ann. Sci. Éc. Norm. Supér., Volume 47 (2014) no. 2, pp. 449-467 | DOI | MR | Zbl
[8] A refined version of the Siegel–Shidlovskii theorem, Ann. Math., Volume 163 (2006) no. 1, pp. 369-379 | DOI | MR | Zbl
[9] Récurrences mahlériennes, suites automatiques, études asymptotiques, Ph. D. Thesis, Université Bordeaux I, Talence (1993) (https://theses.hal.science/tel-00614660) | MR
[10] Transcendental numbers. Number theory IV, Encyclopaedia of Mathematical Sciences, 44, Springer, 1998
[11] Méthode de Mahler en caractéristique non nulle: un analogue du théorème de Ku. Nishioka, Ann. Inst. Fourier, Volume 68 (2018) no. 6, pp. 2553-2580 | DOI | Numdam | MR | Zbl
[12] Topics in matrix analysis, Cambridge University Press, 1994
[13] On the algebraic independence of holomorphic solutions of certain functional equations and their values, Math. Ann., Volume 227 (1977), pp. 9-50 | DOI | MR | Zbl
[14] Algebra, 3rd revised ed, Graduate Texts in Mathematics, 211, Springer, 2002 | Numdam
[15] Arithmetic properties of the solutions of a class of functional equations, J. Reine Angew. Math., Volume 330 (1982), pp. 159-172 | MR | Zbl
[16] Arithmetische Eigenschaften einer Klasse transzendental-transzendenter Funktionen, Math. Z., Volume 32 (1930), pp. 545-585 | DOI | MR | Zbl
[17] A general theory of André’s solution algebras, Ann. Inst. Fourier, Volume 70 (2020) no. 5, pp. 2003-2129 | Numdam | Zbl
[18] Estimate of the orders of the zeroes of functions of a certain class, and their application in the theory of transcendental numbers, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 41 (1977), pp. 253-284 | MR
[19] New approach in Mahler’s method, J. Reine Angew. Math., Volume 407 (1990), pp. 202-219 | MR | Zbl
[20] Algebraic independence by Mahler’s method and S-unit equations, Compos. Math., Volume 92 (1994) no. 1, pp. 87-110 | Numdam | MR | Zbl
[21] Algebraic independence of Mahler functions and their values, Tôhoku Math. J., Volume 48 (1996) no. 1, pp. 51-70 | MR | Zbl
[22] Critères pour l’indépendance algébrique, Publ. Math., Inst. Hautes Étud. Sci., Volume 64 (1986), pp. 5-52 | DOI | Numdam | Zbl
[23] Groupes de Galois et nombres automatiques, J. Lond. Math. Soc., Volume 92 (2015) no. 3, pp. 596-614 | DOI | MR | Zbl
[24] Équations fonctionnelles de Mahler et applications aux suites -régulières, Ph. D. Thesis, Université Bordeaux I, Talence (1992) (https://theses.hal.science/tel-01183330)
[25] Transcendental numbers, De Gruyter Studies in Mathematics, 12, Walter de Gruyter, 1989 | DOI
[26] Diophantine approximation on linear algebraic groups. Transcendence properties of the exponential function in several variables, Grundlehren der Mathematischen Wissenschaften, 326, Springer, 2000 | DOI | Numdam
[27] Commutative algebra II, Graduate Texts in Mathematics, 29, Springer, 1976
Cited by Sources:
Comments - Policy