We prove Gagliardo–Nirenberg interpolation inequalities estimating the Sobolev semi-norm in terms of the bounded mean oscillation semi-norm and of a Sobolev semi-norm, with some of the Sobolev semi-norms having fractional order.
Accepté le :
Publié le :
Jean Van Schaftingen 1
@article{CRMATH_2023__361_G6_1041_0, author = {Jean Van Schaftingen}, title = {Fractional {Gagliardo{\textendash}Nirenberg} interpolation inequality and bounded mean oscillation}, journal = {Comptes Rendus. Math\'ematique}, pages = {1041--1049}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.463}, language = {en}, }
TY - JOUR AU - Jean Van Schaftingen TI - Fractional Gagliardo–Nirenberg interpolation inequality and bounded mean oscillation JO - Comptes Rendus. Mathématique PY - 2023 SP - 1041 EP - 1049 VL - 361 PB - Académie des sciences, Paris DO - 10.5802/crmath.463 LA - en ID - CRMATH_2023__361_G6_1041_0 ER -
Jean Van Schaftingen. Fractional Gagliardo–Nirenberg interpolation inequality and bounded mean oscillation. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1041-1049. doi : 10.5802/crmath.463. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.463/
[1] Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984) no. 2, pp. 125-145 | DOI | MR | Zbl
[2] Composition operators on potential spaces, Proc. Am. Math. Soc., Volume 114 (1992) no. 1, pp. 155-165 | DOI | MR | Zbl
[3] Remarks on some geometric properties of Sobolev mappings, Functional analysis and related topics (Shozo Koshi, ed.), World Scientific, 1991, pp. 65-76 | Zbl
[4] Gagliardo–Nirenberg, composition and products in fractional Sobolev spaces, J. Evol. Equ., Volume 1 (2001) no. 4, pp. 387-404 | DOI | MR | Zbl
[5] Gagliardo–Nirenberg inequalities and non-inequalities: the full story, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 35 (2018) no. 5, pp. 1355-1376 | DOI | MR | Zbl
[6] Sobolev maps to the circle. From the perspective of analysis, geometry, and topology, Progress in Nonlinear Differential Equations and their Applications, 96, Birkhäuser, 2021
[7] Two remarks on and BMO, Adv. Math., Volume 22 (1976) no. 3, pp. 269-277 | DOI | MR | Zbl
[8] A note on BMO and its application, J. Math. Anal. Appl., Volume 303 (2005) no. 2, pp. 696-698 | DOI | MR | Zbl
[9] Ondelettes, espaces d’interpolation et applications, Sémin. Équ. Dériv. Partielles, Volume 1999-2000 (2000), I, 14 pages | Numdam | MR | Zbl
[10] Harmonic analysis of the space BV, Rev. Mat. Iberoam., Volume 19 (2003) no. 1, pp. 235-263 | DOI | MR | Zbl
[11] Improved Sobolev embedding theorem, Sémin. Équ. Dériv. Partielles, Volume 1997-1998 (1998), XVI, 16 pages | Numdam | Zbl
[12] Gagliardo–Nirenberg type inequalities using fractional Sobolev spaces and Besov spaces (2022) | arXiv
[13] spaces of several variables, Acta Math., Volume 129 (1972) no. 3-4, pp. 137-193 | DOI | Zbl
[14] Detailed proof of classical Gagliardo-Nirenberg interpolation inequality with historical remarks, Z. Anal. Anwend., Volume 40 (2021) no. 2, pp. 217-236 | DOI | MR | Zbl
[15] Ulteriori proprietà di alcune classi di funzioni in più variabili, Ric. Mat., Volume 8 (1959), pp. 24-51 | Zbl
[16] Sobolev spaces on an arbitrary metric space, Potential Anal., Volume 5 (1996) no. 4, pp. 403-415 | DOI | MR | Zbl
[17] Differential equations with singular fields, J. Math. Pures Appl., Volume 94 (2010) no. 6, pp. 597-621 | DOI | MR | Zbl
[18] On functions of bounded mean oscillation, Commun. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl
[19] Pointwise multiplicative inequalities and Nirenberg type estimates in weighted Sobolev spaces, Stud. Math., Volume 108 (1994) no. 3, pp. 275-290 | DOI | MR | Zbl
[20] Remarks on Gagliardo–Nirenberg type inequality with critical Sobolev space and BMO, Math. Z., Volume 259 (2008) no. 4, pp. 935-950 | DOI | MR | Zbl
[21] A Luzin type property of Sobolev functions, Indiana Univ. Math. J., Volume 26 (1977) no. 4, pp. 645-651 | DOI | MR | Zbl
[22] Gagliardo–Nirenberg inequality for maximal functions that measure smoothness, Zap. Nauchn. Semin. (POMI), Volume 389 (2011), pp. 143-161 | Zbl
[23] On pointwise interpolation inequalities for derivatives, Math. Bohem., Volume 124 (1999) no. 2-3, pp. 131-148 | MR | Zbl
[24] A partial regularity result for a class of stationary Yang–Mills fields in high dimension, Rev. Mat. Iberoam., Volume 19 (2003) no. 1, pp. 195-219 | DOI | MR | Zbl
[25] A short proof of the Gagliardo–Nirenberg inequality with BMO term, Proc. Am. Math. Soc., Volume 148 (2020) no. 10, pp. 4257-4261 | DOI | MR | Zbl
[26] On elliptic partial differential equations, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 13 (1959), pp. 115-162 | MR | Zbl
[27] Singular integrals and differentiability properties of functions, Princeton Mathematical Series, 30, Princeton University Press, 1970, xiv+290 pages
[28] Gagliardo–Nirenberg inequalities with a BMO term, Bull. Lond. Math. Soc., Volume 38 (2006) no. 2, pp. 294-300 | DOI | MR | Zbl
Cité par Sources :
Commentaires - Politique