Comptes Rendus
Analyse harmonique, Équations aux dérivées partielles
Remarks on the L p convergence of Bessel–Fourier series on the disc
[Remarques sur la convergence L p des séries de Bessel–Fourier sur le disque]
Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1075-1080.

La convergence L p des développements en fonctions propres du Laplacien dans des domaines du plan est largement inconnue lorsque p2. Après avoir discuté des séries de Fourier classiques sur le tore, nous passons au disque, dont les fonctions propres sont explicitement calculables comme étant le produit des fonctions trigonométriques et de Bessel. Nous résumons un résultat de Balodis et Córdoba concernant la convergence L p de la série de Bessel–Fourier dans l’espace de norme mixte L rad p (L ang 2 ) dans le disque pour l’intervalle 4 3<p<4. Nous décrivons ensuite comment on peut modifier leur résultat pour obtenir la convergence dans la norme L p (𝔻,rdrdt) dans le sous-espace L rad p (L ang q ) (1 p+1 q=1) pour l’intervalle 2p<4.

The L p convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for p2. After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the L p convergence of the Bessel–Fourier series in the mixed norm space L rad p (L ang 2 ) on the disk for the range 4 3<p<4. We then describe how to modify their result to obtain L p (𝔻,rdrdt) norm convergence in the subspace L rad p (L ang q ) (1 p+1 q=1) for the restricted range 2p<4.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.464
Classification : 42-02, 42C05, 33C10, 34L10

Ryan Luis Acosta Babb 1

1 University of Warwick, United Kingdom
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2023__361_G7_1075_0,
     author = {Ryan Luis Acosta Babb},
     title = {Remarks on the $L^p$ convergence of {Bessel{\textendash}Fourier} series on the disc},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {1075--1080},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {361},
     year = {2023},
     doi = {10.5802/crmath.464},
     language = {en},
}
TY  - JOUR
AU  - Ryan Luis Acosta Babb
TI  - Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
JO  - Comptes Rendus. Mathématique
PY  - 2023
SP  - 1075
EP  - 1080
VL  - 361
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.464
LA  - en
ID  - CRMATH_2023__361_G7_1075_0
ER  - 
%0 Journal Article
%A Ryan Luis Acosta Babb
%T Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc
%J Comptes Rendus. Mathématique
%D 2023
%P 1075-1080
%V 361
%I Académie des sciences, Paris
%R 10.5802/crmath.464
%G en
%F CRMATH_2023__361_G7_1075_0
Ryan Luis Acosta Babb. Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1075-1080. doi : 10.5802/crmath.464. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.464/

[1] Ryan L. Acosta Babb The L p convergence of Fourier series on triangular domains, Proc. Edinb. Math. Soc., Volume 66 (2023) no. 2, pp. 453-474 | DOI | MR | Zbl

[2] Pedro Balodis; Antonio Córdoba The convergence of multidimensional Fourier–Bessel series, J. Anal. Math., Volume 77 (1999) no. 1, pp. 269-286 | DOI | MR | Zbl

[3] Agnes Benedek; Rafael Panzone Mean convergence of series of Bessel functions, Rev. Unión Mat. Argent., Volume 26 (1972/73), pp. 42-61 | MR | Zbl

[4] Antonio Córdoba The disc multiplier, Duke Math. J., Volume 58 (1989) no. 1, pp. 21-29 | DOI | MR | Zbl

[5] Charles L. Fefferman; Karol W. Hajduk; James C. Robinson Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, Proc. Lond. Math. Soc., Volume 125 (2022) no. 4, pp. 759-777 | DOI | MR | Zbl

[6] L. Fefferman The Multiplier Problem for the Ball, Ann. Math., Volume 94 (1971) no. 2, pp. 330-336 | DOI | MR | Zbl

[7] Loukas Grafakos Classical Fourier Analysis, Graduate Texts in Mathematics, Springer, 2014 | DOI

[8] Loukas Grafakos Modern Fourier Analysis, Graduate Texts in Mathematics, Springer, 2014 | DOI

[9] Yitzhak Katznelson An Introduction to Harmonic Analysis, Cambridge Mathematical Library, Cambridge University Press, 2004 | DOI

[10] George N. Watson A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, 1995

[11] Goerge M. Wing The Mean Convergence of Orthogonal Series, Am. J. Math., Volume 72 (1950) no. 4, pp. 792-808 | DOI | MR

[12] Antoni Zygmund; Robert Fefferman Trigonometric Series, Cambridge Mathematical Library, Cambridge University Press, 2003 | DOI

Cité par Sources :

Commentaires - Politique