The convergence of eigenfunction expansions for the Laplacian on planar domains is largely unknown for . After discussing the classical Fourier series on the 2-torus, we move onto the disc, whose eigenfunctions are explicitly computable as products of trigonometric and Bessel functions. We summarise a result of Balodis and Córdoba regarding the convergence of the Bessel–Fourier series in the mixed norm space on the disk for the range . We then describe how to modify their result to obtain norm convergence in the subspace () for the restricted range .
La convergence des développements en fonctions propres du Laplacien dans des domaines du plan est largement inconnue lorsque . Après avoir discuté des séries de Fourier classiques sur le tore, nous passons au disque, dont les fonctions propres sont explicitement calculables comme étant le produit des fonctions trigonométriques et de Bessel. Nous résumons un résultat de Balodis et Córdoba concernant la convergence de la série de Bessel–Fourier dans l’espace de norme mixte dans le disque pour l’intervalle . Nous décrivons ensuite comment on peut modifier leur résultat pour obtenir la convergence dans la norme dans le sous-espace () pour l’intervalle .
Revised:
Accepted:
Published online:
Ryan Luis Acosta Babb 1
@article{CRMATH_2023__361_G7_1075_0, author = {Ryan Luis Acosta Babb}, title = {Remarks on the $L^p$ convergence of {Bessel{\textendash}Fourier} series on the disc}, journal = {Comptes Rendus. Math\'ematique}, pages = {1075--1080}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.464}, language = {en}, }
Ryan Luis Acosta Babb. Remarks on the $L^p$ convergence of Bessel–Fourier series on the disc. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1075-1080. doi : 10.5802/crmath.464. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.464/
[1] The convergence of Fourier series on triangular domains, Proc. Edinb. Math. Soc., Volume 66 (2023) no. 2, pp. 453-474 | DOI | MR | Zbl
[2] The convergence of multidimensional Fourier–Bessel series, J. Anal. Math., Volume 77 (1999) no. 1, pp. 269-286 | DOI | MR | Zbl
[3] Mean convergence of series of Bessel functions, Rev. Unión Mat. Argent., Volume 26 (1972/73), pp. 42-61 | MR | Zbl
[4] The disc multiplier, Duke Math. J., Volume 58 (1989) no. 1, pp. 21-29 | DOI | MR | Zbl
[5] Simultaneous approximation in Lebesgue and Sobolev norms via eigenspaces, Proc. Lond. Math. Soc., Volume 125 (2022) no. 4, pp. 759-777 | DOI | MR | Zbl
[6] The Multiplier Problem for the Ball, Ann. Math., Volume 94 (1971) no. 2, pp. 330-336 | DOI | MR | Zbl
[7] Classical Fourier Analysis, Graduate Texts in Mathematics, Springer, 2014 | DOI
[8] Modern Fourier Analysis, Graduate Texts in Mathematics, Springer, 2014 | DOI
[9] An Introduction to Harmonic Analysis, Cambridge Mathematical Library, Cambridge University Press, 2004 | DOI
[10] A Treatise on the Theory of Bessel Functions, Cambridge Mathematical Library, Cambridge University Press, 1995
[11] The Mean Convergence of Orthogonal Series, Am. J. Math., Volume 72 (1950) no. 4, pp. 792-808 | DOI | MR
[12] Trigonometric Series, Cambridge Mathematical Library, Cambridge University Press, 2003 | DOI
Cited by Sources:
Comments - Policy