It is shown that if is a unitary operator so that a singular subspace of is unitarily equivalent to a singular subspace of (or ), for each unitary operator , then is the identity operator. In other words, there is no nontrivial generalization of Birman–Krein Theorem that includes the preservation of a singular spectral subspace in this context.
On montre que si est un opérateur unitaire tel qu’un sous-espace singulier de est unitairement équivalent à un sous-espace singulier de (ou ), pour chaque opérateur unitaire , alors est l’opérateur d’identité. En d’autres termes, il n’y a pas de généralisation non triviale du théorème de Birman–Krein qui inclut la préservation d’un sous-espace spectral singulier dans ce contexte.
Accepted:
Published online:
Vanderléa R. Bazao 1; César R. de Oliveira 2; Pablo A. Diaz 2
@article{CRMATH_2023__361_G7_1081_0, author = {Vanderl\'ea R. Bazao and C\'esar R. de Oliveira and Pablo A. Diaz}, title = {On the {Birman{\textendash}Krein} {Theorem}}, journal = {Comptes Rendus. Math\'ematique}, pages = {1081--1086}, publisher = {Acad\'emie des sciences, Paris}, volume = {361}, year = {2023}, doi = {10.5802/crmath.473}, language = {en}, }
Vanderléa R. Bazao; César R. de Oliveira; Pablo A. Diaz. On the Birman–Krein Theorem. Comptes Rendus. Mathématique, Volume 361 (2023), pp. 1081-1086. doi : 10.5802/crmath.473. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.473/
[1] On the theory of wave operators and scattering operators, Dokl. Akad. Nauk SSSR, Volume 144 (1962), pp. 475-478 English translation: Soviet Math. 3 (1962), p. 740–744 | MR | Zbl
[2] Estimates on Green’s functions localization and the quantum kicked rotor model, Ann. Math., Volume 156 (2002) no. 1, pp. 249-294 | DOI | MR | Zbl
[3] Quantum Chaos with time-periodic Hamiltonians, Prog. Theor. Phys., Suppl., Volume 98 (1989), pp. 287-322 | DOI | MR
[4] The Cauchy Transform, Mathematical Surveys and Monographs, 125, American Mathematical Society, 2006 | DOI
[5] Spectral properties of a periodically kicked quantum Hamiltonian, J. Stat. Phys., Volume 59 (1990) no. 3-4, pp. 679-690 | DOI | MR | Zbl
[6] Model spaces: a survey, Invariant subspaces of the shift operator. CRM workshop (Montréal 2013) (Contemporary Mathematics), Volume 638, American Mathematical Society, 2015, pp. 197-245 | DOI | MR | Zbl
[7] On the Kato-Rosenblum Theorem, Pac. J. Math., Volume 123 (1986), pp. 329-335 | DOI | MR | Zbl
Cited by Sources:
Comments - Policy