Comptes Rendus
Analyse harmonique
Heisenberg uniqueness pairs on the Euclidean spaces and the motion group
[Paires d’unicité de Heisenberg sur les espaces euclidiens et le groupe des mouvements]
Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 365-377.

Dans cet article, nous considérons des paires d’unicité de Heisenberg correspondant aux courbes et surfaces exponentielles, au paraboloïde, à la sphère. De plus, nous cherchons des résultats analogues reliés à la paire d’unicité de Heisenberg sur le groupe des mouvements euclidiens et le groupe produit apparenté.

In this article, we consider Heisenberg uniqueness pairs corresponding to the exponential curve and surfaces, paraboloid, and sphere. Further, we look for analogous results related to the Heisenberg uniqueness pair on the Euclidean motion group and related product group.

Reçu le :
Révisé le :
Accepté le :
Publié le :
DOI : 10.5802/crmath.48
Classification : 42A38, 33C10, 33C55

Arup Chattopadhyay 1 ; S. Ghosh 1 ; D.K. Giri 1 ; R.K. Srivastava 1

1 Department of Mathematics, Indian Institute of Technology, Guwahati 781039, India
Licence : CC-BY 4.0
Droits d'auteur : Les auteurs conservent leurs droits
@article{CRMATH_2020__358_3_365_0,
     author = {Arup Chattopadhyay and S. Ghosh and D.K. Giri and R.K. Srivastava},
     title = {Heisenberg uniqueness pairs on the {Euclidean} spaces and the motion group},
     journal = {Comptes Rendus. Math\'ematique},
     pages = {365--377},
     publisher = {Acad\'emie des sciences, Paris},
     volume = {358},
     number = {3},
     year = {2020},
     doi = {10.5802/crmath.48},
     language = {en},
}
TY  - JOUR
AU  - Arup Chattopadhyay
AU  - S. Ghosh
AU  - D.K. Giri
AU  - R.K. Srivastava
TI  - Heisenberg uniqueness pairs on the Euclidean spaces and the motion group
JO  - Comptes Rendus. Mathématique
PY  - 2020
SP  - 365
EP  - 377
VL  - 358
IS  - 3
PB  - Académie des sciences, Paris
DO  - 10.5802/crmath.48
LA  - en
ID  - CRMATH_2020__358_3_365_0
ER  - 
%0 Journal Article
%A Arup Chattopadhyay
%A S. Ghosh
%A D.K. Giri
%A R.K. Srivastava
%T Heisenberg uniqueness pairs on the Euclidean spaces and the motion group
%J Comptes Rendus. Mathématique
%D 2020
%P 365-377
%V 358
%N 3
%I Académie des sciences, Paris
%R 10.5802/crmath.48
%G en
%F CRMATH_2020__358_3_365_0
Arup Chattopadhyay; S. Ghosh; D.K. Giri; R.K. Srivastava. Heisenberg uniqueness pairs on the Euclidean spaces and the motion group. Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 365-377. doi : 10.5802/crmath.48. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.48/

[1] George E. Andrews; Richard Askey; Ranjan Roy Special Functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999 | MR | Zbl

[2] Daniel B. Babot Heisenberg uniqueness pairs in the plane. Three parallel lines, Proc. Am. Math. Soc., Volume 141 (2013) no. 11, pp. 3899-3904 | DOI | MR | Zbl

[3] Michael Benedicks On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl., Volume 106 (1985) no. 1, pp. 180-183 | DOI | MR | Zbl

[4] Francisco Canto-Martín; Håkan Hedenmalm; Alfonso Montes-Rodríguez Perron–Frobenius operators and the Klein-Gordon equation, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 31-66 | DOI | MR | Zbl

[5] Gerald B. Folland Real analysis. Modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999 | Zbl

[6] Deb Kumar Giri; R. K. Srivastava Heisenberg uniqueness pairs for some algebraic curves in the plane, Adv. Math., Volume 310 (2017), pp. 993-1016 | DOI | MR | Zbl

[7] Francisco J. González Vieli A uniqueness result for the Fourier transform of measures on the sphere, Bull. Aust. Math. Soc., Volume 86 (2012) no. 1, pp. 78-82 | DOI | MR | Zbl

[8] Karlheinz Gröchenig; Philippe Jaming The Cramér–Wold theorem on quadratic surfaces and Heisenberg uniqueness pairs, J. Inst. Math. Jussieu, Volume 19 (2020) no. 1, pp. 117-135 | DOI | Zbl

[9] Kenneth I. Gross; Ray A. Kunze Fourier decompositions of certain representations, Symmetric Spaces. Short courses presented at Washington University (Pure and Applied Mathematics), Volume 8, Marcel Dekker, 1972, pp. 119-139 | MR | Zbl

[10] Victor Havin; Burglind Jöricke The Uncertainty Principle in Harmonic Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 28, Springer, 1994 | MR | Zbl

[11] Håkan Hedenmalm; Alfonso Montes-Rodríguez Heisenberg uniqueness pairs and the Klein–Gordon equation, Ann. Math., Volume 173 (2011) no. 3, pp. 1507-1527 | DOI | MR | Zbl

[12] Håkan Hedenmalm; Alfonso Montes-Rodríguez The Klein–Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps, J. Eur. Math. Soc. (2020) (to appear) | DOI | Zbl

[13] Håkan Hedenmalm; Alfonso Montes-Rodríguez The Klein–Gordon equation, the Hilbert transform, and Gauss-type maps: H approximation, J. Anal. Math. (2020) (to appear)

[14] Werner Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. f. Physik, Volume 43 (1927), pp. 172-198 | DOI | Zbl

[15] Philippe Jaming; Karim Kellay A dynamical system approach to Heisenberg uniqueness pairs, J. Anal. Math., Volume 134 (2018) no. 1, pp. 273-301 | DOI | MR | Zbl

[16] Keisaku Kumahara Fourier transforms on the motion groups, J. Math. Soc. Japan, Volume 28 (1976) no. 1, pp. 18-32 | DOI | MR | Zbl

[17] Keisaku Kumahara; Kiyosato Okamoto An analogue of the Paley-Wiener theorem for the Euclidean motion group, Osaka J. Math., Volume 10 (1973), pp. 77-91 | MR | Zbl

[18] Nir Lev Uniqueness theorem for Fourier transform, Bull. Sci. Math., Volume 135 (2011) no. 2, pp. 134-140 | MR | Zbl

[19] Mark Pollicott; Michiko Yuri Dynamical systems and ergodic theory, London Mathematical Society Student Texts, 40, London Mathematical Society, 1998 | MR | Zbl

[20] Per Sjölin Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin, Bull. Sci. Math., Volume 135 (2011) no. 2, pp. 125-133 | DOI | MR | Zbl

[21] Per Sjölin Heisenberg uniqueness pairs for the parabola, J. Fourier Anal. Appl., Volume 19 (2013) no. 2, pp. 410-416 | DOI | MR | Zbl

[22] Christopher D. Sogge Oscillatory integrals and spherical harmonics, Duke Math. J., Volume 53 (1986), pp. 43-65 | DOI | MR | Zbl

[23] R. K. Srivastava Non-harmonic cones are Heisenberg uniqueness pairs for the Fourier transform on n , J. Fourier Anal. Appl., Volume 24 (2018) no. 6, pp. 1425-1437 | DOI | MR | Zbl

[24] Mitsuo Sugiura Unitary representations and harmonic analysis, North-Holland Mathematical Library, 44, North-Holland, 1990 | MR | Zbl

[25] George N. Watson A treatise on the theory of Bessel functions, Cambridge University Press, 1944 | Zbl

Cité par Sources :

Commentaires - Politique