[Paires d’unicité de Heisenberg sur les espaces euclidiens et le groupe des mouvements]
Dans cet article, nous considérons des paires d’unicité de Heisenberg correspondant aux courbes et surfaces exponentielles, au paraboloïde, à la sphère. De plus, nous cherchons des résultats analogues reliés à la paire d’unicité de Heisenberg sur le groupe des mouvements euclidiens et le groupe produit apparenté.
In this article, we consider Heisenberg uniqueness pairs corresponding to the exponential curve and surfaces, paraboloid, and sphere. Further, we look for analogous results related to the Heisenberg uniqueness pair on the Euclidean motion group and related product group.
Révisé le :
Accepté le :
Publié le :
Arup Chattopadhyay 1 ; S. Ghosh 1 ; D.K. Giri 1 ; R.K. Srivastava 1
@article{CRMATH_2020__358_3_365_0, author = {Arup Chattopadhyay and S. Ghosh and D.K. Giri and R.K. Srivastava}, title = {Heisenberg uniqueness pairs on the {Euclidean} spaces and the motion group}, journal = {Comptes Rendus. Math\'ematique}, pages = {365--377}, publisher = {Acad\'emie des sciences, Paris}, volume = {358}, number = {3}, year = {2020}, doi = {10.5802/crmath.48}, language = {en}, }
TY - JOUR AU - Arup Chattopadhyay AU - S. Ghosh AU - D.K. Giri AU - R.K. Srivastava TI - Heisenberg uniqueness pairs on the Euclidean spaces and the motion group JO - Comptes Rendus. Mathématique PY - 2020 SP - 365 EP - 377 VL - 358 IS - 3 PB - Académie des sciences, Paris DO - 10.5802/crmath.48 LA - en ID - CRMATH_2020__358_3_365_0 ER -
%0 Journal Article %A Arup Chattopadhyay %A S. Ghosh %A D.K. Giri %A R.K. Srivastava %T Heisenberg uniqueness pairs on the Euclidean spaces and the motion group %J Comptes Rendus. Mathématique %D 2020 %P 365-377 %V 358 %N 3 %I Académie des sciences, Paris %R 10.5802/crmath.48 %G en %F CRMATH_2020__358_3_365_0
Arup Chattopadhyay; S. Ghosh; D.K. Giri; R.K. Srivastava. Heisenberg uniqueness pairs on the Euclidean spaces and the motion group. Comptes Rendus. Mathématique, Volume 358 (2020) no. 3, pp. 365-377. doi : 10.5802/crmath.48. https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.48/
[1] Special Functions, Encyclopedia of Mathematics and Its Applications, 71, Cambridge University Press, 1999 | MR | Zbl
[2] Heisenberg uniqueness pairs in the plane. Three parallel lines, Proc. Am. Math. Soc., Volume 141 (2013) no. 11, pp. 3899-3904 | DOI | MR | Zbl
[3] On Fourier transforms of functions supported on sets of finite Lebesgue measure, J. Math. Anal. Appl., Volume 106 (1985) no. 1, pp. 180-183 | DOI | MR | Zbl
[4] Perron–Frobenius operators and the Klein-Gordon equation, J. Eur. Math. Soc., Volume 16 (2014) no. 1, pp. 31-66 | DOI | MR | Zbl
[5] Real analysis. Modern techniques and their applications, Pure and Applied Mathematics, John Wiley & Sons, 1999 | Zbl
[6] Heisenberg uniqueness pairs for some algebraic curves in the plane, Adv. Math., Volume 310 (2017), pp. 993-1016 | DOI | MR | Zbl
[7] A uniqueness result for the Fourier transform of measures on the sphere, Bull. Aust. Math. Soc., Volume 86 (2012) no. 1, pp. 78-82 | DOI | MR | Zbl
[8] The Cramér–Wold theorem on quadratic surfaces and Heisenberg uniqueness pairs, J. Inst. Math. Jussieu, Volume 19 (2020) no. 1, pp. 117-135 | DOI | Zbl
[9] Fourier decompositions of certain representations, Symmetric Spaces. Short courses presented at Washington University (Pure and Applied Mathematics), Volume 8, Marcel Dekker, 1972, pp. 119-139 | MR | Zbl
[10] The Uncertainty Principle in Harmonic Analysis, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 28, Springer, 1994 | MR | Zbl
[11] Heisenberg uniqueness pairs and the Klein–Gordon equation, Ann. Math., Volume 173 (2011) no. 3, pp. 1507-1527 | DOI | MR | Zbl
[12] The Klein–Gordon equation, the Hilbert transform, and dynamics of Gauss-type maps, J. Eur. Math. Soc. (2020) (to appear) | DOI | Zbl
[13] The Klein–Gordon equation, the Hilbert transform, and Gauss-type maps: approximation, J. Anal. Math. (2020) (to appear)
[14] Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik, Z. f. Physik, Volume 43 (1927), pp. 172-198 | DOI | Zbl
[15] A dynamical system approach to Heisenberg uniqueness pairs, J. Anal. Math., Volume 134 (2018) no. 1, pp. 273-301 | DOI | MR | Zbl
[16] Fourier transforms on the motion groups, J. Math. Soc. Japan, Volume 28 (1976) no. 1, pp. 18-32 | DOI | MR | Zbl
[17] An analogue of the Paley-Wiener theorem for the Euclidean motion group, Osaka J. Math., Volume 10 (1973), pp. 77-91 | MR | Zbl
[18] Uniqueness theorem for Fourier transform, Bull. Sci. Math., Volume 135 (2011) no. 2, pp. 134-140 | MR | Zbl
[19] Dynamical systems and ergodic theory, London Mathematical Society Student Texts, 40, London Mathematical Society, 1998 | MR | Zbl
[20] Heisenberg uniqueness pairs and a theorem of Beurling and Malliavin, Bull. Sci. Math., Volume 135 (2011) no. 2, pp. 125-133 | DOI | MR | Zbl
[21] Heisenberg uniqueness pairs for the parabola, J. Fourier Anal. Appl., Volume 19 (2013) no. 2, pp. 410-416 | DOI | MR | Zbl
[22] Oscillatory integrals and spherical harmonics, Duke Math. J., Volume 53 (1986), pp. 43-65 | DOI | MR | Zbl
[23] Non-harmonic cones are Heisenberg uniqueness pairs for the Fourier transform on , J. Fourier Anal. Appl., Volume 24 (2018) no. 6, pp. 1425-1437 | DOI | MR | Zbl
[24] Unitary representations and harmonic analysis, North-Holland Mathematical Library, 44, North-Holland, 1990 | MR | Zbl
[25] A treatise on the theory of Bessel functions, Cambridge University Press, 1944 | Zbl
Cité par Sources :
Commentaires - Politique